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a b s t r a c t 

Resting-state functional connectivity (RSFC) is widely used to predict behavioral measures. To predict behavioral measures, representing RSFC with parcellations and 
gradients are the two most popular approaches. Here, we compare parcellation and gradient approaches for RSFC-based prediction of a broad range of behavioral 
measures in the Human Connectome Project (HCP) and Adolescent Brain Cognitive Development (ABCD) datasets. Among the parcellation approaches, we consider 
group-average “hard ” parcellations (Schaefer et al., 2018), individual-specific “hard ” parcellations (Kong et al., 2021a), and an individual-specific “soft ” parcellation 
(spatial independent component analysis with dual regression; Beckmann et al., 2009). For gradient approaches, we consider the well-known principal gradients 
(Margulies et al., 2016) and the local gradient approach that detects local RSFC changes (Laumann et al., 2015). Across two regression algorithms, individual-specific 
hard-parcellation performs the best in the HCP dataset, while the principal gradients, spatial independent component analysis and group-average “hard ” parcellations 
exhibit similar performance. On the other hand, principal gradients and all parcellation approaches perform similarly in the ABCD dataset. Across both datasets, local 
gradients perform the worst. Finally, we find that the principal gradient approach requires at least 40 to 60 gradients to perform as well as parcellation approaches. 
While most principal gradient studies utilize a single gradient, our results suggest that incorporating higher order gradients can provide significant behaviorally 
relevant information. Future work will consider the inclusion of additional parcellation and gradient approaches for comparison. 
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. Introduction 

Resting-state functional connectivity (RSFC) reflects the synchrony
f fMRI signals between brain regions, while a subject is lying at rest
ithout performing any explicit task ( Biswal et al., 1995 ; Greicius et al.,
003 ; Fox and Raichle, 2007 ). There is significant interest in using RSFC
or predicting individual differences in behavior ( van den Heuvel et al.,
009 ; Finn et al., 2015 ; Dubois et al., 2018a ; Rosenberg et al., 2020 ). For
xample, machine learning techniques have been used to learn the rela-
ionship between RSFC patterns and fluid intelligence in a large sample
f participants. Given the RSFC pattern of a new participant, the goal
s to use the learned relationship to predict the fluid intelligence of the
ew participant. 

To predict behavioral measures, there are different approaches for
epresenting RSFC data ( Bijsterbosch et al., 2020 ) with the two most
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opular approaches being parcellations ( Smith et al., 2009 ; Power et al.,
011 ; Yeo et al., 2011 ; Glasser et al., 2016 ) and gradients ( Cohen et al.,
008 ; Margulies et al., 2016 ; Haak et al., 2018 ; Tian et al., 2020 ). Since
ifferent parcellation and gradient approaches might capture different
spects of brain organization, we compared different parcellation and
radient approaches for RSFC-based behavioral prediction. 

Example parcellation approaches include hard-parcellation ap-
roaches that estimate non-overlapping regions of interest (ROIs;
hen et al., 2013 ; Glasser et al., 2016 ; Schaefer et al., 2018 ), and soft-
arcellation approaches that estimate overlapping ROIs ( Calhoun et al.,
001 ; Beckmann et al., 2005 ; Smith et al., 2009 ; Zuo et al., 2010 ;
ee et al., 2012 ; Harrison et al., 2015 ; Farahibozorg et al., 2021 ).
ost studies have utilized RSFC from population-average brain par-

ellations to predict behavior measures. Recent studies have shown
hat individual-specific parcellation topography is behaviorally relevant
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 Bijsterbosch et al., 2018 ; Kong et al., 2019 ; Cui et al., 2020 ). Functional
onnectivity derived from individual-specific parcellations could further
mprove the prediction performance compared with population-average
arcellations ( Li et al., 2019b ; Farahibozorg et al., 2021 ; Kong et al.,
021a ). 

Besides parcellation approaches, many studies have also utilized gra-
ient techniques to characterize brain organization ( Huntenburg et al.,
018 ; Bernhardt et al., 2022 ). For example, the local gradient ap-
roach detects local changes (i.e., gradients) in RSFC across the cor-
ex ( Cohen et al., 2008 ; Wig et al., 2014 ; Laumann et al., 2015 ;
ordon et al., 2016 ), which has been widely used for estimating hard-
arcellations. Recent studies ( Bijsterbosch et al., 2018 ; Kong et al.,
019 ) have suggested that network topography is behaviorally mean-
ngful, so we hypothesize that local gradient maps can also be used
o predict behavior. On the other hand, gradients have also been de-
ived using manifold learning algorithms, such as diffusion embed-
ing (also referred to as principal gradients; Margulies et al., 2016 ),
rincipal component analysis (PCA; Hong et al., 2020 ) and Laplacian
igenmaps (LE; Haak et al., 2018 ; Tian et al., 2020 ). Therefore, in this
tudy, we considered both local and principal gradients for predicting
ehavior. 

There have been previous comparisons of various parcellations
pproaches for predicting behavioral measures ( Dadi et al., 2019 ;
ervaiz et al., 2020 ; Farahibozorg et al., 2021 ). These studies typi-
ally found that soft parcellations (e.g., ICA dual regression) performed
etter than group-level hard parcellations. However, these studies did
ot consider the use of individual-specific hard parcellation approaches
 e.g., Kong et al., 2021a ). Furthermore, these studies found that RSFC
omputed using full correlation (Pearson’s correlation) performed worse
han partial correlation. Given the increased popularity of gradient ap-
roaches, there is a need to compare prediction performance across var-
ous parcellation and gradient approaches. 

One recent study has suggested that RSFC gradients (based on PCA,
iffusion embedding, and Laplacian eigenmaps) resulted in better pre-
iction performance than parcellation-based RSFC ( Hong et al., 2020 ).
owever, prediction with parcellation-based RSFC was performed us-

ng connectome predictive modeling ( Shen et al., 2017 ), while predic-
ion with gradient approaches was performed using canonical correla-
ion analysis ( Smith et al., 2015 ), so it is somewhat challenging to di-
ectly compare the two results. Furthermore, their prediction analyses
ere performed only in the Human Connectome Project (HCP) dataset,
hich is one of the most widely used dataset for investigating individual
ifferences in behaviors. Repeated reuse of the same dataset by multi-
le researchers can lead to inflated error rates ( Thompson et al., 2020 ).
dditionally, repeatedly using the same dataset for training and testing
an cause the model overfit to that dataset, resulting in overly opti-
istic prediction results and less generalizable models to new datasets

 Recht et al., 2019 ; Beyer et al., 2020 ). This emphasizes the importance
f replicating analyses using additional less commonly used datasets.
n the current study, in addition to the widely used HCP dataset, we
eplicate our analyses using the adolescent brain cognitive development
ABCD) dataset. 

In this study, we compared different parcellation and gradient
pproaches for RSFC prediction of behavioral measures across a
ide range of behavioral measures in two different datasets using

wo different prediction models. We considered a group-level hard-
arcellation approach ( Schaefer et al., 2018 ), an individual-specific
ard-parcellation approach ( Kong et al., 2021a ), an individual-specific
oft-parcellation approach based on ICA dual regression ( Calhoun et al.,
001 ; Beckmann et al., 2005 ; Smith et al., 2009 ; Zuo et al., 2010 ;
ickerson et al., 2017 ), the principal gradients ( Margulies et al., 2016 ),
nd the local gradient approach ( Wig et al., 2014 ; Laumann et al., 2015 ;
ordon et al., 2016 ). Furthermore, we considered different resolutions

i.e., number of ROIs or gradients) for each approach. To compare the
rediction performance across different approaches, the resolution was
ptimized as a hyperparameter in the prediction model. In a separate
2 
nalysis, we investigated prediction performance as a function of the
umber of ROIs or gradients. 

. Methods 

.1. Datasets 

We considered two publicly available datasets: the Human Connec-
ome Project (HCP) S1200 release ( Van Essen et al., 2012a ; Smith et al.,
013 ) and the Adolescent Brain Cognitive Development (ABCD) 2.0.1
elease. Both datasets contained structural MRI, resting-state fMRI (rs-
MRI), and multiple behavioral measures for each subject. After strict
re-processing quality control of the HCP and ABCD datasets based on
ur previous studies ( Li et al., 2019a ; Kong et al., 2021a ; Chen et al.,
022 ), we considered participants with all four rs-fMRI scans remaining
s well as all behavioral scores of interest. Our main analysis comprised
46 participants from HCP and 1476 participants from ABCD. 

.2. Preprocessing 

Details of the HCP preprocessing can be found elsewhere ( Van Essen
t al., 2012a ; Glasser et al., 2013 ; Smith et al., 2013 ). The HCP rs-fMRI
ata has been projected to the fs_LR32k space ( Van Essen et al., 2012b ),
enoised with ICA-FIX ( Griffanti et al., 2014 ; Salimi-Khorshidi et al.,
014 ) and aligned with MSMAll ( Robinson et al., 2014 ). Consistent with
ur previous studies ( Li et al., 2019a ; He et al., 2020 ), we further ap-
lied global signal regression (GSR) and censoring to eliminate global
nd head motion related artifacts. More details of the processing can be
ound elsewhere ( Li et al., 2019a ). Runs with more than 50% censored
rames were removed. Participants with all four rs-fMRI runs remaining
 N = 835) were considered. 

Details of the ABCD preprocessing can be found elsewhere
 Casey et al., 2018 ; Hagler et al., 2019 ). We utilized the minimally
reprocessed functional data with additional processing steps includ-
ng T1-T2 ∗ registration, respiratory pseudomotion motion filtering,
uisance regression, censoring and bandpass filtering. Nuisance re-
ressors comprised global signal, ventricular signal, white matter sig-
al, and six motion parameters, as well as their temporal deriva-
ives. The data was then projected to the FreeSurfer fsaverage6 surface
pace and smoothed using a 6 mm full-width half maximum kernel.
ore details of the processing can be found elsewhere ( Chen et al.,

022 ). Of the 2264 unrelated participants considered in our previ-
us study ( Chen et al., 2022 ), 1476 subjects had four runs of rs-fMRI
ata. 

.3. Functional connectivity features for behavioral prediction 

Here, we compared functional connectivity behavioral prediction
cross different parcellation and gradient approaches, including a
roup-level hard-parcellation approach ( Schaefer et al., 2018 ), an
ndividual-specific hard-parcellation approach ( Kong et al., 2021a ), a
ndividual-specific soft-parcellation approach ( Calhoun et al., 2001 ;
eckmann et al., 2005 ; Smith et al., 2009 ; Zuo et al., 2010 ;
ickerson et al., 2017 ), the principal gradient ( Margulies et al., 2016 ),
nd the local gradient ( Wig et al., 2014 ; Laumann et al., 2015 ;
ordon et al., 2016 ). 

The different parcellation and gradient approaches were applied to
ach participant from the HCP and ABCD datasets using all rs-fMRI
cans. We then estimated the functional connectivity features for each
articipant based on the derived parcellations and gradients ( Fig. 1 ): 

1. Group-level hard-parcellation Schaefer2018 . Group-level hard-
parcellations are estimated by averaging or concatenating data
across many individuals, where each vertex is assigned to one
region of interest (ROI). In our previous work, we developed a set
of high-quality group-level hard-parcellations of the cerebral cortex
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Fig. 1. Flowchart across different parcellation and gradient approaches for RSFC-based behavioral prediction. For three parcellation approaches Schaefer2018, 
Kong2021 and sICA, the lower triangular part of the RSFC matrix was vectorized for each participant to serve as the individual-level RSFC features. A 50 × 50 
RSFC matrix correspond to 1225 features, while a 1000 × 1000 RSFC matrix correspond to 499,500 features. For the principal gradient approach PrincipalGrad, the 
principal gradients for each participant were concatenated together to serve as the individual-level RSFC features. At one extreme, 1 principal gradient comprised 
59,412 features for the HCP dataset (fs_LR32k space) and 74,947 features for the ABCD dataset (fsaverage6 space). At the other extreme, 100 principal gradients 
utilized 5,941,200 features for the HCP dataset and 7,494,700 features for the ABCD dataset. For the local gradient approach LocalGrad, the local gradient map was 
used as the individual-level RSFC features. A local gradient map comprised 59,412 features for the HCP dataset and 74,947 features for the ABCD dataset. For each 
approach, we performed behavioral prediction for HCP and ABCD datasets separately using two different prediction models KRR and LRR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with multiple resolutions from 100 to 1000 ROIs ( Schaefer et al.,
2018 ), which we will refer to as “Schaefer2018 ”. For each parcel-
lation resolution, the Schaefer2018 parcellation was applied to all
rs-fMRI scans of each participant to generate a resting-state func-
tional connectivity (RSFC) matrix. The RSFC matrix was generated
by Tikhonov-regularized partial correlation using nets_netmats.m
from FSLNets ( Smith et al., 2011 ; Pervaiz et al., 2020 ). Since the
correlation between two ROIs A and B is the same as the correlation
between ROI B and ROI A in the RSFC matrix, the lower triangular
part of the RSFC contains identical information as the upper tri-
angular part. Therefore, only the lower triangular portion of each
RSFC matrix was vectorized for each participant to serve as the
individual functional connectivity features ( Fig. 1 top row). 

2. Individual-specific hard-parcellation Kong2021 . Individual-specific
hard-parcellations are estimated for each participant, where each
vertex is only assigned to one ROI. We have previously devel-
3 
oped a multi-session hierarchical Bayesian model (MS-HBM)
of individual-specific hard-parcellation that accounted for both
between-subject and within-subject variability ( Kong et al., 2021a ),
which we will refer to as “Kong2021 ”. For each participant, we
utilized the MS-HBM model with pre-trained group priors ( https:
//github.com/ThomasYeoLab/CBIG/tree/master/stable _ projects/ 
brain _ parcellation/Kong2022 _ ArealMSHBM/lib/group _ priors ) to
generate individual-specific Kong2021 parcellations with 100 to
1000 ROIs using all rs-fMRI scans. For each parcellation resolution,
the Kong2021 parcellation was applied to all rs-fMRI scans of
each participant to generate a RSFC matrix. The RSFC matrix
was generated by Tikhonov-regularized partial correlation using
nets_netmats.m from FSLNets ( Smith et al., 2011 ; Pervaiz et al.,
2020 ). The lower triangular portion of each RSFC matrix was
vectorized for each participant to serve as the individual functional
connectivity features ( Fig. 1 second row). 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong2022_ArealMSHBM/lib/group_priors
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3. Individual-specific soft-parcellation sICA . Individual-specific soft-
parcellations are estimated in the cerebral cortex of each partici-
pant, where each vertex could be involved in multiple ROIs. Spatial
independent component analysis (ICA) is one of the most popular
soft-parcellation approaches ( Calhoun et al., 2001 ; Beckmann et al.,
2005 ; Smith et al., 2009 ; Zuo et al., 2010 ; Nickerson et al.,
2017 ). The individual-specific soft-parcellations could be estimated
by spatial ICA (melodic tool from FSL) followed by dual re-
gression (dual_regression tool from FSL; Beckmann et al., 2009 ;
Nickerson et al., 2017 ), which we will refer to as “sICA ”. For each
HCP and ABCD participant, we obtained the individual-specific sICA
parcellations with 50, 100, 200, 300 components using all rs-fMRI
scans. For each resolution and each participant, the RSFC matrix
was generated by Tikhonov-regularized partial correlation using
nets_netmats.m from FSLNets ( Smith et al., 2011 ; Pervaiz et al.,
2020 ). The lower triangular part of each RSFC matrix was vectorized
for each participant to serve as the individual functional connectivity
features ( Fig. 1 third row). 

4. Principal gradients (PrincipalGrad) . Resting-state functional connec-
tivity can be decomposed into multiple principal gradients using di-
mension reduction techniques, such as the non-linear diffusion em-
bedding ( Margulies et al., 2016 ), which we will refer to as “Princi-
palGrad ”. We first generated group-level principal gradients for the
HCP and ABCD datasets separately using rs-fMRI scans of all partic-
ipants ( Margulies et al., 2016 ). For each dataset, we then generated
the principal gradients separately for each participant using all rs-
fMRI scans of this participant. The Procrustes alignment was used
to align individual principal gradient maps to the group-level prin-
cipal gradients ( Hong et al., 2020 ; Vos de Wael et al., 2020 ). We
considered different number of principal gradients. The top 1, 5, 10,
20, 40, 60, 80 or 100 principal gradients were concatenated as the
individual functional connectivity features ( Fig. 1 fourth row). 

5. Local gradient (LocalGrad) . The local gradient approach detects lo-
cal abrupt changes in resting-state functional connectivity across
the cortex ( Cohen et al., 2008 ; Wig et al., 2014 ; Laumann et al.,
2015 ; Gordon et al., 2016 ), which we will refer to as “LocalGrad ”.
For each participant in the HCP and ABCD datasets, we estimated
the local gradient map using all rs-fMRI scans ( Laumann et al.,
2015 ; Gordon et al., 2016 ). Unlike the principal gradient approach
( Margulies et al., 2016 ), the local gradient approach has a single gra-
dient map, which was used as the individual functional connectivity
features ( Fig. 1 last row). 

.4. Behavioral data 

Consistent with our previous work, we considered 58 behavioral
easures from the HCP dataset ( Kong et al., 2019 ; Li et al., 2019a ,
021a ), and 36 behavioral measures from the ABCD dataset ( Chen et al.,
022 ). Because many behavioral scores were correlated, we also in-
luded three behavioral components derived by a factor analysis from
ur previous work ( Ooi et al., 2022 ). Based on the behavioral loadings,
hese three components for HCP dataset were interpreted to be related to
ognition, life dissatisfaction, and emotional recognition, which we will
efer to as “cognition ”, “dissatisfaction ”, and “emotion ”. Across the 58
ehavioral measures, the variance explained by “cognition ” was 9.3%,
he variance explained by “dissatisfaction ” was 14.7%, and the vari-
nce explained by “emotion ” was 3.8%. The cognition component ex-
ibited strong loading on cognitive performance scores such as reading
pronunciation) and vocabulary (picture matching). The dissatisfaction
omponent exhibited strong loading on life dissatisfactory scores such
s perceived stress and loneliness. The emotion component exhibited
trong loading on emotion recognition scores such as emotion recog-
ition (fear) and emotion recognition (sad). These three components
or ABCD dataset were interpreted to be related to cognition, mental
ealth, and personality, which we will refer to as “cognition ”, “men-
al ”, and “personality ”. Across the 36 behavioral measures, the variance
4 
xplained by “cognition ” was 20.7%, the variance explained by “men-
al ” was 13.2%, and the variance explained by “personality ” was 7.6%.
he cognition component exhibited strong loading on cognitive perfor-
ance scores such as overall cognition and fluid cognition. The mental

omponent exhibited strong loading on mental health measures such as
hought problems and aggressive behavior. The personality component
xhibited strong loading on personality measures such as fun seeking
nd reward responsiveness. 

Of the 835 HCP participants with 4 runs, only 746 have all 58 behav-
oral measures, who were used in the current study. Of the 1476 ABCD
articipants with 4 runs, all have the 36 behavioral measures, who were
sed in the current study. 

.5. RSFC-Based behavioral prediction 

Consistent with our previous work ( Kong et al., 2019 ; Li et al., 2019a ;
e et al., 2020 ; Kong et al., 2021a ), kernel ridge regression (KRR) was
sed to predict behavioral measures in our main analysis. Given parcel-
ations and gradients derived from different approaches (Schaefer2018,
ong2021, sICA, PrincipalGrad, LocalGrad), KRR performs predictions
ased on the similarity between functional connectivity features. Sup-
ose 𝑦 is the behavioral measure (e.g., fluid intelligence) and FC is the
unctional connectivity features of a test participant. In addition, sup-
ose 𝑦 𝑖 is the behavioral measure (e.g., fluid intelligence) and FC 𝑖 is
he individual-specific functional connectivity matrix of the 𝑖 -th train-
ng participant. Then kernel regression would predict the behavior of
he test participant as the weighted average of the behavioral measures
f the training participants: 𝑦 ≈

∑

𝑖 ∈training set 
Similarity ( FC 𝑖 , FC ) 𝑦 𝑖 . Here,

imilarity ( FC 𝑖 , FC ) is the Pearson’s correlation between the functional
onnectivity features of the 𝑖 -th training participant and the test partic-
pant. Therefore, a training participant is weighted more if the training
articipant’s functional connectivity features are more similar to the test
articipant. For example, let’s assume there are two training participants
nd one test participant. The RSFC of the test participant is highly simi-
ar to one of the training participants (e.g., RSFC similarity is 0.8), but is
ery different from the other training participant (e.g., RSFC similarity
s 0.1). Suppose the behavioral scores of these two training participants
re 10 and 100, respectively. The behavioral score of the test participant
ill be predicted as y ≈ 10 × 0.8 + 100 × 0.1 = 18. A L2-regularization

erm was used in the model to reduce overfitting. 
To compare the prediction performance across different parcella-

ion and gradient approaches, we treated the resolution (i.e., number
f parcels or gradients) as a hyperparameter for approaches with mul-
iple resolutions (i.e., Schaefer2018, Kong2021, sICA, and Principal-
rad). This hyperparameter is estimated via a nested cross-validation
rocedure (see below). As a separate analysis, we also compared the
rediction performance across different resolutions for Schaefer2018,
ong2021, sICA, and PrincipalGrad, where the prediction was per-

ormed using RSFC features from different number of ROIs/gradients. 
A nested cross-validation procedure was performed to train predic-

ive models. In the HCP dataset, we performed 100 random replications
f 20-fold nested cross-validation. Family structure was taken into ac-
ount by ensuring participants from the same family were kept within
he same fold and not split across folds. In the ABCD dataset, as before
 Chen et al., 2022 ), we combined participants across the 19 imaging sites
o reduce sample-size variability across sites, yielding 9 “site-clusters ”.
ach site-cluster comprised at least 124 participants (see Table S1). We
erformed a leave-3-site-clusters out nested cross-validation. For each
old, 6 random site-clusters were used for training while the remaining
 site-clusters were used for testing. The prediction was performed for
very possible split of the site clusters, resulting in 84 replications (9
hoose 3 = 84). 

The resolution parameter searching ranges were [100, 200, 300, …,
000], [100, 200, 300, …, 1000], [50, 100, 200, 300], and [1, 5, 10,
0, 40, 60, 80, 100] for Schaefer2018, Kong2011, sICA, and Princi-
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Fig. 2. Individual-specific hard-parcellation approach Kong2021 compared fa- 
vorably with other approaches for kernel ridge regression (KRR) in the HCP 
dataset. (A) Average prediction accuracies (Pearson’s correlation) of all 58 
behavioral measures, task performance measures, and self-reported measures. 
(B) Prediction accuracies (Pearson’s correlation) of three behavioral compo- 
nents: cognition, dissatisfaction, and emotion. Boxplots utilized default Python 
seaborn parameters, that is, box shows median and interquartile range (IQR). 
Whiskers indicate 1.5 IQR. Designation of behavioral measures into “self- 
reported ” and “task-performance ” measures followed previous studies ( Li et al., 
2019a ; Liégeois et al., 2019 ; Kong et al., 2021a ). The RSFC features of differ- 
ent gradient and parcellation approaches with optimal resolutions (estimated 
from inner-loop nested cross-validation) were used for predicting behavioral 
measures. LRR results are shown in Fig. S1. 
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alGrad respectively. The regularization parameter searching range for
RR was [0, 0.00001, 0.0001, 0.001, 0.004, 0.007, …, 1, 1.5, 2, …, 4,
, 10, 15, 20]. The resolution parameter and the regularization param-
ter were estimated within the “inner-loop ” of the inner-loop (nested)
ross-validation procedure. The optimal parameters from the inner-loop
ross-validation were then used to predict the behavioral measures in
he test fold or test site-clusters. 

As certain behavioral measures are known to correlate with motion
 Siegel et al., 2017 ), we regressed out age, sex, framewise displacement,
nd DVARS from the behavioral data before kernel ridge regression for
oth HCP and ABCD datasets. To prevent any information leak from the
raining data to test data, the regression was performed on the training
ata and the estimated nuisance regression coefficients were applied to
he test fold. 

Accuracy was measured by correlating the predicted and actual be-
avioral measure across all participants within the test fold ( Finn et al.,
015 ; Kong et al., 2019 ; Li et al., 2019a ; Kong et al., 2021a ), and
hen averaged across test folds and replications. When comparing be-
ween approaches, a corrected resampled t -test for repeated k-fold cross-
alidation was performed ( Bouckaert and Frank, 2004 ). To control
or multiple comparisons, we performed a false discovery rate (FDR)
 Benjamini and Hochberg, 1995 ) correction with q < 0.05 for all p-
alues reported in this paper. 

To ensure our conclusions are robust across different regression ap-
roaches, we also considered linear ridge regression (LRR) as the predic-
ive model, which has been widely used in many studies ( Siegel et al.,
016 ; Cui et al., 2020 ; Rapuano et al., 2020 ). The regularization param-
ter searching range for LRR was [0.05, 0.1, 0.15, …,1]. 

.6. Code and data availability 

Code for this work is freely available at the GitHub repository main-
ained by the Computational Brain Imaging Group ( https://github.com/
homasYeoLab/CBIG ). The Schaefer2018 group-level parcellations
ith 100 to 1000 ROIs can be found here ( https://github.com/
homasYeoLab/CBIG/tree/master/stable _ projects/brain _ parcellation/ 
chaefer2018 _ LocalGlobal/Parcellations ). The individual-specific
ong2021 parcellations with 100 to 1000 ROIs of HCP dataset can
e found here ( https://github.com/ThomasYeoLab/Kong2022 _ Areal
SHBM/tree/main/Parcellations ). The kernel ridge regression and lin-

ar ridge regression model used in this paper are available in this Github
epository ( https://github.com/ThomasYeoLab/CBIG/tree/master/
tilities/matlab/predictive _ models ). Code specific to the regres-
ion models and analyses in this study can be found here ( https://
ithub.com/ThomasYeoLab/CBIG/tree/master/stable _ projects/predict _ 
henotypes/Kong2023 _ GradPar ). The ABCD data are publicly avail-
ble via the NIMH Data Archive (NDA) website ( https://dx.doi.org/
0.15154/1528046 ). 

. Results 

.1. Kong2021 compared favorably with other approaches in the HCP 

ataset 

The RSFC features of different gradient and parcellation approaches
ith optimal resolutions (estimated from inner-loop nested cross-
alidation) were used for predicting behavioral measures in the HCP
ataset. For the HCP dataset, we trained a separate KRR model for each
pproach to predict three behavioral components ( “cognition ”, “dissat-
sfaction ”, and “emotion ”) and 58 behavioral measures. 

Fig. 2 A shows the average prediction accuracies of all 58 behavioral
easures, task performance measures, and self-reported measures from

he HCP dataset across different gradient and parcellation approaches.
ig. 2 B shows the prediction accuracies of three behavioral compo-
ents from the HCP dataset across different gradient and parcellation
pproaches. 
5 
To compare the prediction accuracies across different approaches, p
alues were computed between each pair of approaches. Fig. 3 shows
he p values of comparing prediction accuracies between each pair of ap-
roaches in the HCP dataset. Since there were 5 different approaches,
he p values were shown as 5 × 5 matrices. The i-th row and j-th column
f each matrix represents the p value of comparing prediction accuracies
etween i th approach and j-th approach. P values that remained sig-
ificant after correcting for multiple comparisons (FDR q < 0.05) were
olored based on -log10(p). Therefore, bright color indicates small p val-
es, while dark color indicates large p values. The black color indicates
on-significant p values after FDR correction. The warm colors repre-
ent higher prediction accuracies of the “row ” approach compared with
he “column ” approach. For example, the average prediction accuracy
cross 58 behavioral measures of Kong2021 (2nd approach) was signif-
cantly better than the sICA (4th approach). Therefore, the 2nd row and

https://github.com/ThomasYeoLab/CBIG
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations
https://github.com/ThomasYeoLab/Kong2022_ArealMSHBM/tree/main/Parcellations
https://github.com/ThomasYeoLab/CBIG/tree/master/utilities/matlab/predictive_models
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/Kong2023_GradPar
https://dx.doi.org/10.15154/1528046
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Fig. 3. P values (-log10(p)) of comparing prediction accuracies between each pair of approaches for kernel ridge regression (KRR) in the HCP dataset. Non-black 
colors denote significantly different prediction performances after correcting for multiple comparisons with FDR q < 0.05. Bright colors indicate small p values, 
dark colors indicate large p values. For each pair of comparisons, warm colors represent higher prediction accuracies of the “row ” approach than the “column ”
approach. Individual-specific hard-parcellation approach Kong2021 compared favorably with the other approaches, as can be seen from warm colors along the rows 
corresponding to Kong2021. LRR results are shown in Fig. S2. 
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th column of the “All ” panel (in Fig. 3 ) is yellow, while the 4th row
nd 2nd column of the “All ” panel (in Fig. 3 ) is blue. 

The individual-specific hard-parcellation approach Kong2021 com-
ared favorably with the other approaches, as can be seen from warm
olors along the rows corresponding to Kong2021 in Fig. 3 . This is espe-
ially the case for average prediction accuracies across all 58 behavioral
easures ( p = 4.4e-3, p = 2.9e-5, p = 2.4e-3, and p = 5.3e-25 with respect

o Schaefer2018, sICA, PrincipalGrad, and LocalGrad, respectively) and
elf-reported measures ( p = 7.7e-3, p = 2.9e-2, p = 7.6e-3, and p = 1.5e-8
ith respect to Schaefer2018, sICA, PrincipalGrad, and LocalGrad, re-

pectively). The principal gradient approach PrincipalGrad, sICA, and
chaefer2018 performed similarly. The local gradient approach Local-
rad performed the worst, as can be seen by cool colors along the rows
orresponding to LocalGrad in Fig. 3 . Similar results were obtained with
RR (Figs. S1 and S2). 

We repeated the comparison using full correlation RSFC instead of
artial correlation RSFC for Schaefer2018, Kong2021, and sICA. Con-
istent with previous work ( Dadi et al., 2019 ; Pervaiz et al., 2020 ;
arahibozorg et al., 2021 ), we found that full correlation RSFC per-
ormed worse than partial correlation RSFC (Fig. S3). Because of the
ower prediction performance for full correlation RSFC, the principal
radient approach PrincipalGrad achieved statistically better perfor-
ance than full correlation RSFC for certain behavioral measures (e.g.,

ask performance), while achieving similar results in other behavioral
easures (Figs. S4–S7). 
6 
.2. Parcellation and principal gradients exhibit similar performance in the 

BCD dataset 

The RSFC features of different gradient and parcellation approaches
ith optimal resolutions (estimated from inner-loop nested cross-
alidation) were used for predicting behavioral measures in the ABCD
ataset. For the ABCD dataset, we trained a separate KRR model for each
pproach to predict three behavioral components ( “cognition ”, “men-
al ”, and “personality ”) and 36 behavioral measures. For both datasets,
e categorized the behavioral measures into “task performance ” and

self-reported ” measures. 
Fig. 4 A shows the average prediction accuracies of all 36 behavioral

easures, task performance measures, and self-reported measures from
he ABCD dataset across different gradient and parcellation approaches.
ig. 4 B shows the prediction accuracies of three behavioral components
rom the ABCD dataset across different gradient and parcellation ap-
roaches. 

In the ABCD dataset, the principal gradient approach PrincipalGrad
as numerically the best for most cases, but there was largely no statis-

ical difference among the approaches ( Fig. 5 ). More specifically, Princi-
alGrad was significantly better than Kong2021, sICA and LocalGrad in
he case of the average prediction accuracies across task performance
easures ( p = 3.3e-2, p = 7.6e-5, and p = 5.8e-29 with respect to
ong2021, sICA, and LocalGrad, respectively), while Kong2021 was sig-
ificantly better than sICA and PrincipalGrad in the case of the mental
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Fig. 4. Principal gradient approach achieves comparable behavioral prediction 
performance as parcellation approaches for kernel ridge regression (KRR) in 
the ABCD dataset. (A) Average prediction accuracies (Pearson’s correlation) 
of all 36 behavioral measures, task performance measures, and self-reported 
measures. (B) Prediction accuracies (Pearson’s correlation) of three behavioral 
components: cognition, mental health, and personality. Boxplots utilized default 
Python seaborn parameters, that is, box shows median and interquartile range 
(IQR). Whiskers indicate 1.5 IQR. Designation of behavioral measures into “self- 
reported ” and “task-performance ” measures followed previous studies ( Li et al., 
2019a ; Liégeois et al., 2019 ; Kong et al., 2021a ). The RSFC features of differ- 
ent gradient and parcellation approaches with optimal resolutions (estimated 
from inner-loop nested cross-validation) were used for predicting behavioral 
measures. LRR results are shown in Fig. S8. The principal gradient approach 
PrincipalGrad was numerically the best for most cases, but there was largely no 
statistical difference among the approaches. 
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ealth component ( p = 3.7e-2, p = 2.0e-2 with respect to sICA and Prin-
ipalGrad respectively). Similar results were obtained with LRR (Figs.
8 and S9). 

We repeated the comparison using full correlation RSFC instead of
artial correlation RSFC for Schaefer2018, Kong2021, and sICA. The
rediction performance of full correlation RSFC was numerically (but
ot significantly) worse than using partial correlation RSFC for most
ases in the ABCD dataset (Fig. S10). Because of the lower prediction
erformance for full correlation RSFC, the principal gradient approach
ow achieved statistically better performance than full correlation RSFC
or certain behavioral measures (e.g., task performance and cognition),
hile achieving similar results in other behavioral measures (Figs. S11–
14). 
7 
.3. Task performance measures are more predictable than self-reported 

easures for all approaches 

To explore which behavioral measures can be consistently predicted
ell regardless of gradient and parcellation approaches, we ordered the
ehavioral measures based on averaged prediction accuracies (Pearson’s
orrelation) across different approaches with the optimized resolutions
or KRR in the HCP ( Fig. 6 ) and ABCD ( Fig. 7 ) datasets. Our previous
tudies have suggested that self-reported and task performance measures
ight be differentially predicted under different conditions ( Li et al.,
019a ; Liégeois et al., 2019 ; Kong et al., 2021a ). For example, the task
erformance measures were more predictable than self-reported mea-
ures based on functional connectivity of hard-parcellation approaches
 Kong et al., 2021a ). 

In the HCP dataset, we found that there were more task perfor-
ance measures (pink circles) on the left side of x-axis in Fig. 6 .
he average prediction accuracies of task performance measures were
 = 0.156 ± 0.004 (mean ± std), r = 0.160 ± 0.004, r = 0.135 ± 0.004,
 = 0.149 ± 0.004, and r = 0.058 ± 0.003 for Schaefer2018, Kong2021,
ICA, PrincipalGrad, and LocalGrad, respectively ( Fig. 2 A), while the
rediction accuracies of self-reported measures were r = 0.099 ± 0.005,
 = 0.115 ± 0.005, r = 0.093 ± 0.005, r = 0.089 ± 0.006, and
 = 0.023 ± 0.005 for Schaefer2018, Kong2021, sICA, PrincipalGrad,
nd LocalGrad, respectively ( Fig. 2 A). 

In the ABCD dataset, we found that there were more task per-
ormance measures (pink circles) on the left side of x-axis in Fig. 7 .
he average prediction accuracies of task performance measures were
 = 0.220 ± 0.016 (mean ± std), r = 0.216 ± 0.015, r = 0.209 ± 0.016,
 = 0.229 ± 0.014, and r = 0.056 ± 0.013 for Schaefer2018, Kong2021,
ICA, PrincipalGrad, and LocalGrad, respectively ( Fig. 4 A), while the
rediction accuracies of self-reported measures were r = 0.059 ± 0.015,
 = 0.058 ± 0.015, r = 0.049 ± 0.016, r = 0.061 ± 0.0140, and
 = 0.014 ± 0.010 for Schaefer2018, Kong2021, sICA, PrincipalGrad,
nd LocalGrad, respectively ( Fig. 4 A). 

These results suggested that on average, task performance measures
ere more predictable than self-reported measures across all gradient
nd parcellation approaches ( p = 4.0e-4, p = 2.6e-3, p = 7.2e-3, p = 2.6e-
, and p = 3.5e-2 for Schaefer2018, Kong2021, sICA, PrincipalGrad, and
ocalGrad, respectively). Similar results were obtained with LRR (Figs.
15 and S16). P values remained significant after correcting for multiple
omparisons with FDR q < 0.05. 

.4. Prediction performances vary across resolutions for both gradient and 

arcellation approaches 

To explore the impact of the number of gradients and parcels, we
erformed behavioral prediction for each approach using different res-
lutions in the HCP and ABCD datasets. The left column of Fig. 8 and 9
how the KRR prediction accuracies (Pearson’s correlation) of the aver-
ge prediction accuracies of all behavioral measures for Schaefer2018,
ong2021, sICA, and PrincipalGrad in the HCP and ABCD datasets with
ifferent resolutions. The local gradient approach LocalGrad was not
ncluded here because this approach did not have different resolutions.

To compare the prediction accuracies across different resolutions for
ach approach, p values were computed between each pair of resolu-
ions. The right column of Fig. 8 and 9 show the p values of comparing
rediction accuracies between each pair of resolutions in the HCP and
BCD datasets. If there were K different resolutions for an approach,

he p values of this approach were shown as K × K matrices. The i th
ow and j-th column of each matrix represents the p value of compar-
ng prediction accuracies between i th resolution and j-th resolution. P
alues remained significant after correcting for multiple comparisons
ith FDR q < 0.05 were colored based on -log10(p). The bright colors

ndicate small p values, while the dark colors indicate large p values.
he warm colors represent higher prediction accuracies of the “row ”
esolution than the “column ” column resolution. For example, the aver-
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Fig. 5. P values (-log10(p)) of comparing prediction accuracies between each pair of approaches for kernel ridge regression (KRR) in the ABCD dataset. Non-black 
colors denote significantly different prediction performances after correcting for multiple comparisons with FDR q < 0.05. Bright colors indicate small p values, dark 
colors indicate large p values. For each pair of comparisons, warm colors represent higher prediction accuracies of the “row ” approach than the “column ” approach. 
There was no statistical difference among most approaches. LRR results are shown in Fig. S9. 
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ge prediction accuracy across 58 behavioral measures of Schaefer2018
00 ROIs (1st resolution) was significantly worse than Schaefer2018
00 ROIs (4th resolution). Therefore, the 1st row and 4th column of the
ig. 8 A p value matrix is blue color, while the 4th row and 1st column
f that p value matrix is yellow. 

In the HCP dataset, the hard-parcellation approaches Schaefer2018
nd Kong2021with low resolutions generally predicted behavioral mea-
ures worse than high resolutions, especially in the case of 100 ROIs
 Figs. 8 A and 8 B). The prediction accuracies plateaued around 300 ROIs
or Schaefer2018 and 200 ROIs for Kong2021. Compared with other
esolutions, Schaefer2018 and Kong2021 with 100 ROIs yielded signifi-
antly worse prediction accuracies of all 58 behavioral measures with p
 2.6e-7 and p < 8.3e-5, respectively. Similarly, the principal gradient
pproach PrincipalGrad with low resolutions also predicted behavioral
easures worse than high resolutions ( Fig. 8 D). The prediction accura-

ies kept increasing and plateaued around 40 gradients. Compared with
sing more than 40 gradients, PrincipalGrad with less than 40 gradients
ielded significantly worse prediction accuracies of all 58 behavioral
easures with p < 5.2e-5. By contrast, the soft-parcellation approach

ICA with high resolutions predicted behavioral measures worse than
ow resolutions, especially in the case of 300 components ( Fig. 8 C).
ompared with other resolutions, sICA with 300 components yielded
ignificantly worse prediction accuracies with p < 3.8e-3. 

Intriguingly, in the ABCD dataset, the prediction accuracies of all
arcellation approaches Schaefer2018, Kong2021, and sICA exhibited
o obvious difference across resolutions ( Fig. 9 A to 9 C). The princi-
8 
al gradient approach PrincipalGrad with low resolutions generally pre-
icted behavioral measures worse than high resolutions. The prediction
ccuracies plateaued around 60 gradients ( Fig. 9 D). Compared with less
han 40 gradients, PrincipalGrad with more than 60 gradients yielded
ignificantly higher prediction accuracies with p < 9.8e-3. 

Similar results were obtained with LRR (Figs. S17 and S18). Pre-
iction results of task performance measures, self-reported measures,
nd three behavioral components are shown in Figs. S9 to S28, yielding
imilar conclusions. Figs. S39 to S42 show the prediction results across
ifferent resolutions for all approaches in the same plot. 

. Discussion 

.1. Overview 

In this manuscript, we compared different parcellation and gra-
ient approaches for RSFC prediction of behavioral measures in two
ifferent datasets. Individual-specific hard-parcellation Kong2021 com-
ared favorably with other approaches in the HCP dataset, while prin-
ipal gradient and parcellation approaches performed similarly in the
BCD dataset. We found that for all parcellation and gradient ap-
roaches, task performance measures were more predictable than self-
eported measures. We showed that prediction performances varied
cross resolutions for all gradient and parcellation approaches. Further-
ore, RSFC principal gradients at sufficiently high resolution (e.g., more

han 40 or 60 gradients) exhibited similar behavioral prediction per-
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Fig. 6. Task performance measures were predicted better than self-reported measures across different gradient and parcellation approaches with optimized resolutions 
for KRR in the HCP dataset. 58 behavioral measures were ordered based on average prediction accuracies across Schaefer2018, Kong2021, sICA, PrincipalGrad, and 
LocalGrad. Pink circles indicate task performance measures. Green triangles indicate self-reported measures. There were more task performance measures (pink 
circles) on the left side of x-axis. Boxplots utilized default Python seaborn parameters, that is, box shows median and interquartile range (IQR). Whiskers indicate 
1.5 IQR. Designation of behavioral measures into “self-reported ” and “task-performance ” measures followed previous studies ( Li et al., 2019a ; Liégeois et al., 2019 ; 
Kong et al., 2021a ). LRR results are shown in Fig. S15. 
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ormance as parcellation-based RSFC. These findings were replicated
n both HCP and ABCD datasets using two prediction models KRR
nd LRR. 

.2. Functional connectivity behavioral prediction using parcellation versus 

radients 

There has been great interest in functional connectivity prediction
f behavioral measures. While most previous studies utilized RSFC from
ard- or soft-parcellations, few studies have focused on gradient tech-
iques for behavioral prediction. One recent study showed that princi-
al gradients were behaviorally meaningful ( Hong et al., 2020 ). Hong
nd colleagues further compared the prediction performance between
rincipal gradients and RSFC from the Schaefer2018 group-level hard-
arcellation with 1000 ROIs. They found that 100 principal gradients
utperformed Schaefer2018 1000-ROI hard-parcellation in predicting
ognitive factor score in HCP dataset. 

In our study, instead of only focusing one specific resolution, we con-
idered multiple resolutions for each approach and optimized the reso-
ution as a hyperparameter in the prediction models. We compared the
rediction performance between parcellation and gradient approaches
sing the same prediction framework with two different prediction mod-
ls. We performed prediction for a wide range of behavioral measures
cross different domains and three behavioral components derived from
 factor analysis. The prediction analyses were done in the HCP healthy
oung adult dataset, and the ABCD healthy children dataset. 

Similarly, we also found that principal gradients could predict behav-
oral measures as well as RSFC from parcellations in HCP dataset using
oth KRR and LRR. However, unlike Hong and colleagues ( Hong et al.,
020 ), we found that principal gradients achieved similar level of
9 
rediction accuracy as the Schaefer2018 group-level hard-parcellation
n HCP dataset. Furthermore, the individual-specific hard-parcellation
ong2021 achieved the best prediction results. 

More specifically, Hong and colleagues showed that combining 100
rincipal gradients was able to predict cognitive factor score with a
 = 0.405, while RSFC from Schaefer2018 1000-ROI group-level hard-
arcellation only achieved an accuracy of r = 0.181. In our study,
e found that principal gradients could predict cognition component

core with a r = 0.520 ± 0.011 using KRR and r = 0.487 ± 0.011 us-
ng LRR, while RSFC from Schaefer2018 group-level hard-parcellation
ould achieve an accuracy of r = 0.513 ± 0.013 using KRR and
 = 0.514 ± 0.008 using LRR. Therefore, our principal gradient predic-
ion performance was similar to our parcellation-based RSFC prediction
erformance. We replicated similar results in a children dataset (ABCD).

The main reason for this discrepancy might be due to different pre-
iction models being utilized for principal gradient and parcellation
pproaches in Hong and colleagues (2020). In their behavioral predic-
ion framework, they utilized the canonical correlation analysis (CCA)
or principal gradients, but utilized the connectome-based predictive
odeling approach ( Shen et al., 2017 ) for Schaefer2018. Since the

hoice of prediction model in the behavioral prediction framework af-
ects the prediction performance ( Cui and Gong, 2018 ; Dadi et al., 2019 ;
ervaiz et al., 2020 ), the prediction results generated by two different
rediction models were not comparable between approaches. In Hong
nd colleagues (2020), it is unclear whether the superior prediction per-
ormance of principal gradients compared to Schaefer2018 is due to
ifferent representations (i.e., the principal gradients representing the
rain better than the Schaefer2018 parcellation) or different prediction
odels (i.e., CCA outperforming the connectome-based predictive mod-

ling approach). 
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Fig. 7. Task performance measures were predicted better than self-reported measures across different gradient and parcellation approaches with optimized resolutions 
for KRR in the ABCD dataset. 36 behavioral measures were ordered based on average prediction accuracies across Schaefer2018, Kong2021, sICA, PrincipalGrad, 
and LocalGrad. Pink circles indicate task performance measures. Green triangles indicate self-reported measures. There were more task performance measures (pink 
circles) on the left side of x-axis. Boxplots utilized default Python seaborn parameters, that is, box shows median and interquartile range (IQR). Whiskers indicate 
1.5 IQR. Designation of behavioral measures into “self-reported ” and “task-performance ” measures based on ABCD behavioral measures description ( Li et al., 2019a ; 
Liégeois et al., 2019 ; Kong et al., 2021a ). LRR results are shown in Fig. S16. 
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Another possible source of this discrepancy might be differences be-
ween the cognitive factor score from Hong and colleagues ( Hong et al.,
020 ) and the cognitive component score from the current study. Hong
nd colleagues used an exploratory factor analysis (EFA) to extract a
ognitive factor score from 65 HCP raw behavioral measures, while we
sed a principal component analysis to derive a cognitive component
core from 58 HCP raw behavioral measures. However, the cognitive
actor score from Hong and colleagues and the cognition component
core from the current study both exhibited strong loading on similar
ognitive performance scores such as fluid intelligence (PMAT), visual
pisodic memory, reading, reading (pronunciation), vocabulary (picture
atching), and spatial orientation. Therefore, this might not be the main

eason. 
Interestingly, the local gradient approach performed much worse

han parcellation approaches and principal gradients. The local gradi-
nt approach has been widely used as a tool to derive hard-parcellation
 Laumann et al., 2015 ; Gordon et al., 2016 ). Specifically, an edge detec-
ion approach (i.e., watershed algorithm) was applied on the gradient
ap to generate the binarized boundary map, which could be used to de-
ne non-overlapping ROIs ( Laumann et al., 2015 ; Gordon et al., 2016 ).
ecent studies ( Bijsterbosch et al., 2018 ; Kong et al., 2019 ) have sug-
ested that network topography is behaviorally meaningful, so we hy-
othesize that local gradient maps can also be used to predict behavior.
herefore, instead of using the hard-parcellation from the local gradi-
nt approach to predict behavioral measures, we used the individual-
pecific gradient maps. However, a single gradient map might lose too
uch information compared with the RSFC from the local gradient hard-
arcellation, yielding poor prediction performance. The local gradient
ap was especially suited for delineating brain regions because detect-

ng abrupt changes in RSFC is somewhat similar to delineate histological
oundaries of cortical areas ( Cohen et al., 2008 ; Buckner and Yeo, 2014 ;
 e

10 
ig et al., 2014 ). In fact, the local gradient map was partially used in
chaefer2018 and Kong2021 to derive better hard-parcellations. Over-
ll, this suggests that the local gradients are helpful for deriving cortical
arcellations but might not contain much behaviorally-relevant infor-
ation. 

.3. Prediction of task performance measures is better than self-reported 

easures 

Our results suggested that the task performance measures were more
redictable than self-reported measures by RSFC for all parcellation and
radient approaches in both HCP and ABCD datasets ( Figs. 6 , 7 , S15 and
16). This distinction between task performance and self-reported mea-
ures echoed well with previous investigations of RSFC–behavior rela-
ionships. It has been shown that RSFC could predict cognition and task
erformance measures better than self-reported measures ( Dubois et al.,
018a ; Li et al., 2019a ; Kong et al., 2021a ). Dynamic functional con-
ectivity is also more strongly associated with task performance mea-
ures than self-reported measures ( Vidaurre et al., 2017 ; Liégeois et al.,
019 ; Ikeda et al., 2022 ). Furthermore, utilizing functional connectiv-
ty from task fMRI rather resting-state fMRI has been shown to improve
he prediction of cognition more than personality and mental health
 Chen et al., 2022 ). 

One possible reason for better prediction accuracies in task per-
ormance measures might be a result of the subjective nature of self-
eported measures. For example, the self-reported personality measures
EO-FFI could be influenced by an individual’s insight, impression man-
gement, and reference group effects ( Dubois et al., 2018b ), leading
o unreliable estimate of personality. We might be able to predict self-
eported measures better with more accurate estimates of personality,
motion and mental health. 
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Fig. 8. Average prediction accuracies (Pearson’s correlation) of all 58 behavioral measures vary across resolutions for gradient and parcellation approaches using 
KRR in the HCP dataset. (A) Prediction accuracies and p values of the hard-parcellation Schaefer2018 with 100 to 1000 ROIs. (B) Prediction accuracies and p 
values of the hard-parcellation Kong2021 with 100 to 1000 ROIs. (C) Prediction accuracies and p values of the soft-parcellation sICA with 50 to 300 components. 
(D) Prediction accuracies and p values of the principal gradient PrincipalGrad with 1 to 100 gradients. Boxplots utilized default Python seaborn parameters, that 
is, box shows median and interquartile range (IQR). Whiskers indicate 1.5 IQR. P values (-log10(p)) were computed between prediction accuracies of each pair 
of resolutions. Non-black colors denote significantly different prediction performances after correcting for multiple comparisons with FDR q < 0.05. Bright colors 
indicate small p values, dark colors indicate large p values. For each pair of comparisons, warm colors represent higher prediction accuracies of the “row ” resolution 
than the “column ” resolution. 
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Fig. 9. Average prediction accuracies (Pearson’s correlation) of all 36 behavioral measures vary across resolutions for gradient and parcellation approaches using 
KRR in the ABCD dataset. (A) Prediction accuracies and p values of the hard-parcellation Schaefer2018 with 100 to 1000 ROIs. (B) Prediction accuracies and p 
values of the hard-parcellation Kong2021 with 100 to 1000 ROIs. (C) Prediction accuracies and p values of the soft-parcellation sICA with 50 to 300 components. 
(D) Prediction accuracies and p values of the principal gradient PrincipalGrad with 1 to 100 gradients. Boxplots utilized default Python seaborn parameters, that 
is, box shows median and interquartile range (IQR). Whiskers indicate 1.5 IQR. P values (-log10(p)) were computed between prediction accuracies of each pair 
of resolutions. Non-black colors denote significantly different prediction performances after correcting for multiple comparisons with FDR q < 0.05. Bright colors 
indicate small p values, dark colors indicate large p values. For each pair of comparisons, warm colors represent higher prediction accuracies of the “row ” resolution 
than the “column ” resolution. 
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.4. Impact of resolutions in connectivity prediction of behavioral measures

Previous studies have established that the optimal resolution for
ehavioral prediction varied across behavioral measures using RSFC
rom different soft- and hard-parcellation approaches ( Dadi et al., 2019 ,
020 ). Within a reasonable range, the impact of resolutions in predic-
ion accuracy was small ( Dadi et al., 2019 ). Pervaiz and colleagues
lso explored the impact of sICA resolution for predicting fluid intel-
igence( Pervaiz et al., 2020 ). They found that increasing dimensionality
f sICA could lead to an increase in prediction accuracy. Furthermore,
ICA outperformed the group-level hard-parcellation approach Schae-
er2018 in predicting fluid intelligence ( Pervaiz et al., 2020 ). One recent
tudy compared cognition prediction accuracies of different resolutions
f a new soft-parcellation approach ( Farahibozorg et al., 2021 ). They
ocused on high-resolution soft-parcellations (i.e., 100, 150, 200 com-
onents) and found the prediction performance was generally similar
cross resolutions ( Farahibozorg et al., 2021 ). 

Consistent with previous studies, we found the optimal resolution
n predicting behavioral measures varied across behavioral phenotypes
or each parcellation approach. Within a range of high resolutions, the
mpact of resolutions in prediction performance were relatively small
or hard-parcellation approaches. We also found that increasing reso-
utions of different parcellation approaches might not yield better pre-
iction performance. Specifically, the soft-parcellation approach sICA
ended to have relatively lower prediction accuracy with very high res-
lution in the HCP dataset. For example, the average prediction ac-
uracy of all 58 behavioral measures of HCP using sICA 200 compo-
ents were significantly worse than lower resolutions 50, 100, and 150
 Fig. 8 C). 

Intriguingly, we found that the prediction accuracies of soft- and
ard-parcellation approaches had no obvious difference across reso-
utions in the ABCD children dataset. One possible reason for this
ight be due to discrepancy in brain organization between healthy

oung adults and young children. Specifically, the Schaefer2018
roup-level hard-parcellations were derived from healthy young
dults, which might not be optimal for representing RSFC of young
hildren. 

While there have been several studies focusing on the impact of dif-
erent resolutions for soft- and hard-parcellation approaches in RSFC
rediction of behavioral measures ( Dadi et al., 2019 ; Pervaiz et al.,
020 ; Farahibozorg et al., 2021 ), few studies have looked into the gra-
ient approach. A recent study ( Hong et al., 2020 ) compared the pre-
iction performances between using a single principal gradient versus
ombining 100 gradients. In our study, we considered a wide range of
esolutions for principal gradients. With increased number of principal
radients, we found that the prediction performance increased in both
CP and ABCD dataset. Most studies have focused mainly on the first or
rst several principal gradients ( Margulies et al., 2016 ; Paquola et al.,
019 ; Wang et al., 2019 ; Tian et al., 2020 ; Kong et al., 2021b ), since
hese gradients captured the most variance in RSFC ( Huntenburg et al.,
018 ). However, the first principal gradient alone predicted behavioral
easures very poorly in both HCP and ABCD datasets. In fact, the
rediction accuracy of principal gradients plateaued only after more
han 40 gradients in the HCP dataset and 60 gradients in the ABCD
ataset. 

We note that the optimal number of principal gradients might de-
end on the goal of a particular study. The first few gradients are rela-
ively stable features of brain organization that might not vary signifi-
antly across individuals. As such, most literature interested in organi-
ation of the brain at the group-level mainly focused on the first few
rincipal gradients. However, the less widely studied higher order gra-
ients captured more idiosyncrasies across participants. Principal gra-
ients studies focusing on individual differences in human behaviors
ould need at least 40 to 60 gradients to not lose significant behav-

orally relevant information. On the other hand, for other studies, a
maller number of gradients might suffice. 
13 
.5. Limitations 

There are a wide range of options that exist for parcellation ap-
roaches ( Glasser2016 ; Shen2013 ; Gordon2016 ; Farahibozorg2021 ).
he gradients could also be derived using other manifold learning al-
orithms such as principal component analysis (PCA; Hong et al., 2020 )
nd Laplacian eigenmaps (LE; Haak et al., 2018 ; Tian et al., 2020 ). While
ur behavioral prediction framework is applicable to other parcellation
nd gradient approaches, we focused on three representative parcella-
ion approaches (Schaefer2018, Kong2021, and sICA) and two gradient
pproaches (PrincipalGrad, LocalGrad) in this paper. Previous papers
ave demonstrated that the performance of RSFC-based behavioral pre-
iction model could vary a lot with different parcellation approaches
 Dadi et al., 2019 ; Pervaiz et al., 2020 ; Farahibozorg et al., 2021 ). Fu-
ure work with more choices of parcellation and gradient approaches
ould potentially bring new insights into the comparison between par-
ellations versus gradients for RSFC-based behavioral prediction. 

Similar to previous studies ( Dadi et al., 2019 ; Pervaiz et al., 2020 ;
arahibozorg et al., 2021 ), we also found RSFC computed using full cor-
elation (Pearson’s correlation) performed worse than partial correlation
or both hard- and soft-parcellation approaches (Figs. S3 and S10). This
uggests that partial correlation RSFC could provide more behaviorally
elevant information than full correlation RSFC. However, it is unclear
hat is the equivalence of partial correlation for gradient approaches.

t might be possible to improve the prediction performance for gradient
pproaches by using a different representation. We leave this for future
ork. 

. Conclusions 

We compared 3 different parcellation approaches (Schaefer2018,
ong2021 and sICA) and 2 different gradient techniques (PrincipalGrad
nd LocalGrad) for RSFC prediction of behavioral measures from HCP
nd ABCD datasets using KRR and LRR. We showed that functional con-
ectivity principal gradients could predict behavioral measures similar
o parcellation approaches with optimized resolutions. Comparing dif-
erent approaches, individual-specific hard-parcellation approach per-
ormed the best in the HCP dataset, while principal gradient and par-
ellation approaches performed similarly in the ABCD dataset. In both
atasets, we found that the task performance measures could be pre-
icted better than self-reported measures for all parcellation and gradi-
nt approaches. Furthermore, hard-parcellations and principal gradients
ith very low resolutions performed worse than high resolutions, but

his is not necessarily true for soft-parcellation approach sICA. Overall,
ur results suggested that principal gradients with relatively high res-
lution ( > 40 or > 60 gradients) could predict behavioral measures no
orse than parcellation approaches. 
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