46 research outputs found

    Road salt emissions: A comparison of measurements and modelling using the NORTRIP road dust emission model

    Get PDF
    AbstractDe-icing of road surfaces is necessary in many countries during winter to improve vehicle traction. Large amounts of salt, most often sodium chloride, are applied every year. Most of this salt is removed through drainage or traffic spray processes but a certain amount may be suspended, after drying of the road surface, into the air and will contribute to the concentration of particulate matter. Though some measurements of salt concentrations are available near roads, the link between road maintenance salting activities and observed concentrations of salt in ambient air is yet to be quantified. In this study the NORTRIP road dust emission model, which estimates the emissions of both dust and salt from the road surface, is applied at five sites in four Nordic countries for ten separate winter periods where daily mean ambient air measurements of salt concentrations are available. The model is capable of reproducing many of the salt emission episodes, both in time and intensity, but also fails on other occasions. The observed mean concentration of salt in PM10, over all ten datasets, is 4.2 Όg/m3 and the modelled mean is 2.8 Όg/m3, giving a fractional bias of −0.38. The RMSE of the mean concentrations, over all 10 datasets, is 2.9 Όg/m3 with an average R2 of 0.28. The mean concentration of salt is similar to the mean exhaust contribution during the winter periods of 2.6 Όg/m3. The contribution of salt to the kerbside winter mean PM10 concentration is estimated to increase by 4.1 ± 3.4 Όg/m3 for every kg/m2 of salt applied on the road surface during the winter season. Additional sensitivity studies showed that the accurate logging of salt applications is a prerequisite for predicting salt emissions, as well as good quality data on precipitation. It also highlights the need for more simultaneous measurements of salt loading together with ambient air concentrations to help improve model parameterisations of salt and moisture removal processes

    Health and climate related ecosystem services provided by street trees in the urban environment

    Full text link

    Assessing the Potential of Regulating Ecosystem Services as Nature-Based Solutions in Urban Areas

    Get PDF
    Mounting research assesses the provision of regulating ecosystem services by green infrastructure in urban areas, but the extent to which these services can offer effective nature-based solutions for addressing urban climate change-related challenges is rarely considered. In this chapter, we synthesize knowledge from assessments of urban green infrastructure carried out in Europe and beyond to evaluate the potential contribution of regulating ecosystem services to offset carbon emissions, reduce heat stress and abate air pollution at the metropolitan, city and site scales. Results from this review indicate that the potential of regulating ecosystem services provided by urban green infrastructure to counteract these three climate change-related pressures is often limited and/or uncertain, especially at the city and metropolitan levels. However, their contribution can have a substantially higher impact at site scales such as in street canyons and around green spaces. We note that if regulating ecosystem services are to offer effective nature-based solutions in urban areas, it is critically important that green infrastructure policies target the relevant implementation scale. This calls for a coordination between authorities dealing with urban and environmental policy and for the harmonization of planning and management instruments in a multilevel governance approach. Regulating ecosystem services ‱ Urban green infrastructure ‱ Global climate regulation ‱ Local climate regulation ‱ Air quality regulation ‱ Multi-scale assessmentpublishedVersio

    Atmos. Chem. Phys.

    No full text

    Elemental content of PM<sub>2.5</sub> aerosol particles collected in Göteborg during the Göte-2005 campaign in February 2005

    No full text
    International audienceGöte?2005 was a measurement campaign in the city of Göteborg with the aim of studying the influence of the winter thermal inversions on urban air pollution. Elemental speciation of PM2.5 aerosol particles, collected on Teflon filters at three urban sites and one rural site in the Göteborg region, was a major part of the study. Trace element analysis was done by Energy Dispersive X-Ray Fluorescence (EDXRF) spectrometry and the concentrations of S, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Br and Pb were determined. The elemental content of the particles in combination with information of local wind speed and direction and also backward trajectories were used to estimate the source areas of the pollutants. We can conclude that S, V, Ni, Br, and Pb have their main sources outside the Göteborg area, since we cannot see elevated concentrations of these elements during an inversion episode. Sea traffic and harbour activities were also identified, primarily by the S and V content of the particles. This study proves that the elemental analysis by EDXRF presents valuable information for tracing the origin of air masses arriving at a measurement site
    corecore