29 research outputs found

    Direct field evidence of autocatalytic iodine release from atmospheric aerosol

    Get PDF
    Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.e., iodine monochloride [ICI] and iodine monobromide [IBr]) in a midlatitude coastal environment. Significant levels of ICI and IBr with mean daily maxima of 4.3 and 3.0 parts per trillion by volume (1-min average), respectively, have been observed throughout the campaign. We show that the heterogeneous reaction of HOI on marine aerosol and subsequent production of iodine interhalogens are much faster than previously thought. These results indicate that the fast formation of iodine interhalogens, together with their rapid photolysis, results in more efficient recycling of atomic iodine than currently considered in models. Photolysis of the observed ICI and IBr leads to a 32% increase in the daytime average of atomic iodine production rate, thereby enhancing the average daytime iodine-catalyzed ozone loss rate by 10 to 20%. Our findings provide direct field evidence that the autocatalytic mechanism of iodine release from marine aerosol is important in the atmosphere and can have significant impacts on atmospheric oxidation capacity.Peer reviewe

    Differing mechanisms of new particle formation at two Arctic sites.

    Get PDF
    New particle formation in the Arctic atmosphere is an important source of aerosol particles. Understanding the processes of Arctic secondary aerosol formation is crucial due to their significant impact on cloud properties and therefore Arctic amplification. We observed the molecular formation of new particles from low-volatility vapors at two Arctic sites with differing surroundings. In Svalbard, sulfuric acid (SA) and methane sulfonic acid (MSA) contribute to the formation of secondary aerosol and to some extent to cloud condensation nuclei (CCN). This occurs via ion-induced nucleation of SA and NH3 and subsequent growth by mainly SA and MSA condensation during springtime and highly oxygenated organic molecules during summertime. By contrast, in an ice-covered region around Villum, we observed new particle formation driven by iodic acid but its concentration was insufficient to grow nucleated particles to CCN sizes. Our results provide new insight about sources and precursors of Arctic secondary aerosol particles.Peer reviewe

    A secretome profile indicative of oleate-induced proliferation of HepG2 hepatocellular carcinoma cells

    Get PDF
    Increased fatty acid (FA) is often observed in highly proliferative tumors. FAs have been shown to modulate the secretion of proteins from tumor cells, contributing to tumor survival. However, the secreted factors affected by FA have not been systematically explored. Here, we found that treatment of oleate, a monounsaturated omega-9 FA, promoted the proliferation of HepG2 cells. To examine the secreted factors associated with oleate-induced cell proliferation, we performed a comprehensive secretome profiling of oleate-treated and untreated HepG2 cells. A comparison of the secretomes identified 349 differentially secreted proteins (DSPs; 145 upregulated and 192 downregulated) in oleate-treated samples, compared to untreated samples. The functional enrichment and network analyses of the DSPs revealed that the 145 upregulated secreted proteins by oleate treatment were mainly associated with cell proliferation-related processes, such as lipid metabolism, inflammatory response, and ER stress. Based on the network models of the DSPs, we selected six DSPs (MIF, THBS1, PDIA3, APOA1, FASN, and EEF2) that can represent such processes related to cell proliferation. Thus, our results provided a secretome profile indicative of an oleate-induced proliferation of HepG2 cell

    Fast Predictor-Corrector method for solving Caputo and Atangana-Baleanu fractional differential equations

    No full text
    In this work, we propose a new effective Predictor-Corrector (PC) method to solve Caputo and A-B FDEs by using the kernel approximation of fractional operators. The proposed method only requires O(N) computational costs, while the conventional method does O(N2). Also, it achieves a uniform accuracy order regardless of the value of fractional order. Several numerical examples and applications are demonstrated to confirm the convergence rate and the computational cost reduction

    Analysis of Surface Plasmon Resonance Curves with a Novel Sigmoid-Asymmetric Fitting Algorithm

    No full text
    The present study introduces a novel curve-fitting algorithm for surface plasmon resonance (SPR) curves using a self-constructed, wedge-shaped beam type angular interrogation SPR spectroscopy technique. Previous fitting approaches such as asymmetric and polynomial equations are still unsatisfactory for analyzing full SPR curves and their use is limited to determining the resonance angle. In the present study, we developed a sigmoid-asymmetric equation that provides excellent curve-fitting for the whole SPR curve over a range of incident angles, including regions of the critical angle and resonance angle. Regardless of the bulk fluid type (i.e., water and air), the present sigmoid-asymmetric fitting exhibited nearly perfect matching with a full SPR curve, whereas the asymmetric and polynomial curve fitting methods did not. Because the present curve-fitting sigmoid-asymmetric equation can determine the critical angle as well as the resonance angle, the undesired effect caused by the bulk fluid refractive index was excluded by subtracting the critical angle from the resonance angle in real time. In conclusion, the proposed sigmoid-asymmetric curve-fitting algorithm for SPR curves is widely applicable to various SPR measurements, while excluding the effect of bulk fluids on the sensing layer

    Design and Implementation of IoT-based HVAC and Lighting System for Energy Saving

    No full text
    Building Energy Management System(BEMS) technology is under study as one of the various solutions to environmental problems such as depletion of energy resources, global warming, and climate change. Solving the energy problems of the future BEMS is not the only goal. Occupants must be guaranteed a comfortable environment. HVAC systems and lighting systems are a large part of building energy consumption, which also means that it is an important part of energy conservation. In this paper, we propose IoT-based HVAC and Lighting(I-HVAC&L) system for HVAC system and lighting system management. With I-HVAC&L System, you can save energy efficiency without compromising the convenience of residents’

    Design and Implementation of IoT-based HVAC and Lighting System for Energy Saving

    No full text
    Building Energy Management System(BEMS) technology is under study as one of the various solutions to environmental problems such as depletion of energy resources, global warming, and climate change. Solving the energy problems of the future BEMS is not the only goal. Occupants must be guaranteed a comfortable environment. HVAC systems and lighting systems are a large part of building energy consumption, which also means that it is an important part of energy conservation. In this paper, we propose IoT-based HVAC and Lighting(I-HVAC&L) system for HVAC system and lighting system management. With I-HVAC&L System, you can save energy efficiency without compromising the convenience of residents’

    Energy Storage System Control Algorithm by Operating Target Power to Improve Energy Sustainability of Smart Home

    No full text
    As energy issues are emerging around the world, a variety of smart home technologies aimed at realizing zero energy houses are being introduced. Energy storage system (ESS) for smart home energy independence is increasingly gaining interest. However, limitations exist in that most of them are controlled according to time schedules or used in conjunction with photovoltaic (PV) generation systems. In consideration of load usage patterns and PV generation of smart home, this study proposes an ESS control algorithm that uses constant energy of energy network while making maximum use of ESS. Constant energy means that the load consumes a certain amount of power under all conditions, which translates to low variability. The proposed algorithm makes a smart home a load of energy network with low uncertainty and complexity. The simulation results show that the optimal ESS operating target power not only makes the smart home use power constantly from the energy network, but also maximizes utilization of the ESS. In addition, since the smart home is a load that uses constant energy, it has the advantage of being able to operate an efficient energy network from the viewpoint of energy providers

    Anatomical and Biomechanical Characteristics of the Anterolateral Ligament: A Descriptive Korean Cadaveric Study Using a Triaxial Accelerometer

    No full text
    Background and Objectives: The anterolateral ligament (ALL) could be the potential anatomical structure responsible for rotational instability after anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to investigate the anatomical and biomechanical characteristics of the ALL in Korean cadaveric knee joints. Materials and Methods: Twenty fresh-frozen cadaveric knees were dissected and tested. Femoral and tibial footprints of the ALL were recorded. Pivot shift and Lachman tests were measured with KiRA. Results: The prevalence of ALL was 100%. The average distance of the tibial footprint to the tip of the fibular head was 19.85 ± 3.41 mm; from the tibial footprint to Gerdy’s tubercle (GT) was 18.3 ± 4.19 mm; from the femoral footprint to the lateral femoral epicondyle was 10.25 ± 2.97 mm. ALL’s footprint distance was the longest at 30° of flexion (47.83 ± 8.05 mm, p p p = 0.022), where the footprint distance was the longest at 30° of flexion (52.05 ± 7.60 mm). No significant difference was observed in KiRA measurements between intact ALL–ACL and ALL-transected knees for pivot shift and Lachman tests. However, ACL–ALL-transected knees showed significant differences compared to the intact ALL–ACL and ALL-transected knees (p Conclusions: The ALL was identified as a distinct ligament structure with a 100% prevalence in this cadaveric study. The ALL plays a protective role in internal rotational stability. An isolated ALL transection did not significantly affect the ALL footprint distances or functional stability tests. Therefore, the ALL is thought to act as a secondary supportive stabilizer for rotational stability of the knee joint in conjunction with the ACL
    corecore