6 research outputs found

    Validation of Two Rapid Diagnostic Tests for Visceral Leishmaniasis in Kenya

    Get PDF
    BACKGROUND: Visceral leishmaniasis (VL) is a systemic parasitic disease that is fatal unless treated. In Kenya, national VL guidelines rely on microscopic examination of spleen aspirate to confirm diagnosis. As this procedure is invasive, it cannot be safely implemented in peripheral health structures, where non-invasive, accurate, easy to use diagnostic tests are needed. METHODOLOGY: We evaluated the sensitivity, specificity and predictive values of two rapid diagnostic tests (RDT), DiaMed IT LEISH and Signal-KA, among consecutive patients with clinical suspicion of VL in two treatment centres located in Baringo and North Pokot District, Rift Valley province, Kenya. Microscopic examination of spleen aspirate was the reference diagnostic standard. Patients were prospectively recruited between May 2010 and July 2011. PRINCIPAL FINDINGS: Of 251 eligible patients, 219 patients were analyzed, including 131 VL and 88 non-VL patients. The median age of VL patients was 16 years with predominance of males (66%). None of the tested VL patients were co-infected with HIV. Sensitivity and specificity of the DiaMed IT LEISH were 89.3% (95%CI: 82.7-94%) and 89.8% (95%CI: 81.5-95.2%), respectively. The Signal KA showed trends towards lower sensitivity (77.1%; 95%CI: 68.9-84%) and higher specificity (95.5%; 95%CI: 88.7-98.7%). Combining the tests did not improve the overall diagnostic performance, as all patients with a positive Signal KA were also positive with the DiaMed IT LEISH. CONCLUSION/SIGNIFICANCE: The DiaMed IT LEISH can be used to diagnose VL in Kenyan peripheral health facilities where microscopic examination of spleen aspirate or sophisticated serological techniques are not feasible. There is a crucial need for an improved RDT for VL diagnosis in East Africa

    Characterization of long COVID temporal sub-phenotypes by distributed representation learning from electronic health record data: a cohort studyResearch in Context

    No full text
    Summary: Background: Characterizing Post-Acute Sequelae of COVID (SARS-CoV-2 Infection), or PASC has been challenging due to the multitude of sub-phenotypes, temporal attributes, and definitions. Scalable characterization of PASC sub-phenotypes can enhance screening capacities, disease management, and treatment planning. Methods: We conducted a retrospective multi-centre observational cohort study, leveraging longitudinal electronic health record (EHR) data of 30,422 patients from three healthcare systems in the Consortium for the Clinical Characterization of COVID-19 by EHR (4CE). From the total cohort, we applied a deductive approach on 12,424 individuals with follow-up data and developed a distributed representation learning process for providing augmented definitions for PASC sub-phenotypes. Findings: Our framework characterized seven PASC sub-phenotypes. We estimated that on average 15.7% of the hospitalized COVID-19 patients were likely to suffer from at least one PASC symptom and almost 5.98%, on average, had multiple symptoms. Joint pain and dyspnea had the highest prevalence, with an average prevalence of 5.45% and 4.53%, respectively. Interpretation: We provided a scalable framework to every participating healthcare system for estimating PASC sub-phenotypes prevalence and temporal attributes, thus developing a unified model that characterizes augmented sub-phenotypes across the different systems. Funding: Authors are supported by National Institute of Allergy and Infectious Diseases, National Institute on Aging, National Center for Advancing Translational Sciences, National Medical Research Council, National Institute of Neurological Disorders and Stroke, European Union, National Institutes of Health, National Center for Advancing Translational Sciences

    Clinical phenotypes and outcomes in children with multisystem inflammatory syndrome across SARS-CoV-2 variant eras: a multinational study from the 4CE consortiumResearch in context

    No full text
    Summary: Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection. It remains unclear how MIS-C phenotypes vary across SARS-CoV-2 variants. We aimed to investigate clinical characteristics and outcomes of MIS-C across SARS-CoV-2 eras. Methods: We performed a multicentre observational retrospective study including seven paediatric hospitals in four countries (France, Spain, U.K., and U.S.). All consecutive confirmed patients with MIS-C hospitalised between February 1st, 2020, and May 31st, 2022, were included. Electronic Health Records (EHR) data were used to calculate pooled risk differences (RD) and effect sizes (ES) at site level, using Alpha as reference. Meta-analysis was used to pool data across sites. Findings: Of 598 patients with MIS-C (61% male, 39% female; mean age 9.7 years [SD 4.5]), 383 (64%) were admitted in the Alpha era, 111 (19%) in the Delta era, and 104 (17%) in the Omicron era. Compared with patients admitted in the Alpha era, those admitted in the Delta era were younger (ES −1.18 years [95% CI −2.05, −0.32]), had fewer respiratory symptoms (RD −0.15 [95% CI −0.33, −0.04]), less frequent non-cardiogenic shock or systemic inflammatory response syndrome (SIRS) (RD −0.35 [95% CI −0.64, −0.07]), lower lymphocyte count (ES −0.16 × 109/uL [95% CI −0.30, −0.01]), lower C-reactive protein (ES −28.5 mg/L [95% CI −46.3, −10.7]), and lower troponin (ES −0.14 ng/mL [95% CI −0.26, −0.03]). Patients admitted in the Omicron versus Alpha eras were younger (ES −1.6 years [95% CI −2.5, −0.8]), had less frequent SIRS (RD −0.18 [95% CI −0.30, −0.05]), lower lymphocyte count (ES −0.39 × 109/uL [95% CI −0.52, −0.25]), lower troponin (ES −0.16 ng/mL [95% CI −0.30, −0.01]) and less frequently received anticoagulation therapy (RD −0.19 [95% CI −0.37, −0.04]). Length of hospitalization was shorter in the Delta versus Alpha eras (−1.3 days [95% CI −2.3, −0.4]). Interpretation: Our study suggested that MIS-C clinical phenotypes varied across SARS-CoV-2 eras, with patients in Delta and Omicron eras being younger and less sick. EHR data can be effectively leveraged to identify rare complications of pandemic diseases and their variation over time. Funding: None
    corecore