45 research outputs found

    Verification of the usability ultrasonic pulse method for the assessing of frost resistance of concrete bricks

    Get PDF
    Bakalářská práce se zabývá ověřením využitelnosti ultrazvukové impulsové metody pro stanovení mrazuvzdornosti betonu. V teoretické části je pojednáno o základních charakteristikách vibrolisovaného betonu, popisu působení mrazu a rozmrazování na beton a další faktory ovlivňující mrazuvzdornost betonu. Následně jsou sumarizovány normové požadavky na betonové zdící prvky, zkušební postupy pro zkoušení mrazuvzdornosti nedestruktivními i destruktivnímu metodami betonu a dalších stavebních materiálů a jejich systémy vyhodnocování. Druhá část bakalářské práce je věnována analýze a vyhodnocení výsledků a souvislostí experimentálních prací, ve kterých byla provedena zkouška mrazuvzdornosti betonových cihel cyklickým zmrazováním, a jejich zkoušení nedestruktivní ultrazvukovou impulsovou metodou a zároveň destruktivním způsobem.Purpose of Bachelor thesis is to verify use of the utrasonic impulsive method to determine frost resistence of the concrete. Theoretical part disscusses about basic characteristic of a vibropressed concrete, description of a causes of frost and defrosting on the concrete. As well further factor simple menting frost resistance are reviewed. Summary is followed with standard requirements forwall concrete elements, trial proceduresfor non destructive and destructive methods for concrete and other construction materials and thein evaluation systems. Second part of Bachelor thesis is dedicated to analyse and evaluate results and relationship of trials used for testing of a concrete brick in frost resistence with use of cyclic freezing and use of a trial non destrucive ultrasonic impulsive method as well destructive mode.

    Metals – impact and implications

    Get PDF
    Impact of metal in vitro administration on rat tissue oxygen consumption is referred in the first part. Toxicological implications of in vivo metal administration to rats and the study of potential penetration of metal into the rat brain, which may eventually result in oxygen radical production are presented in second part

    Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare

    Full text link
    A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.Comment: 26 pages, 9 figures, accepted to Solar Physic

    The Solar Particle Acceleration Radiation and Kinetics (SPARK) Mission Concept

    Get PDF
    © 2023by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure.Peer reviewe

    The Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN): A next-generation solar γ-ray spectroscopic imaging instrument concept

    Get PDF
    Models of particle acceleration in solar eruptive events suggest that roughly equal energy may go into accelerating electrons and ions. However, while previous solar X-ray spectroscopic imagers have transformed our understanding of electron acceleration, only one resolved image of γ-ray emission from solar accelerated ions has ever been produced. This paper outlines a new satellite instrument concept—the large imaging spectrometer for solar accelerated nuclei (LISSAN)—with the capability not only to observe hundreds of events over its lifetime, but also to capture multiple images per event, thereby imaging the dynamics of solar accelerated ions for the first time. LISSAN provides spectroscopic imaging at photon energies of 40 keV–100 MeV on timescales of ≲10 s with greater sensitivity and imaging capability than its predecessors. This is achieved by deploying high-resolution scintillator detectors and indirect Fourier imaging techniques. LISSAN is suitable for inclusion in a multi-instrument platform such as an ESA M-class mission or as a smaller standalone mission. Without the observations that LISSAN can provide, our understanding of solar particle acceleration, and hence the space weather events with which it is often associated, cannot be complete

    The Solar Particle Acceleration Radiation and Kinetics (SPARK) mission concept

    Get PDF
    Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure

    The Solar Particle Acceleration Radiation and Kinetics (SPARK) Mission Concept

    Get PDF
    Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure

    Parking policy in the area of the capital city of Prague

    No full text
    Cílem mé diplomové práce „Doprava v klidu na území hlavního města Prahy“ je zanalyzovat současnou dopravní situaci v Praze se zaměřením na dopravu v klidu, zjistit, jaké nástroje na zklidňování dopravy jsou v systému již implementovány a porovnat situaci s jinými evropskými metropolemi.The main focus fo his diploma thesis titled „Parking policy in the area of the capital city of Prague“ is to analyse the current traffic situation in Prague focusing primarily on stationary traffic. It also aims to determine what tools are already implemented in the systém in order to control and calm the traffic situation and to compare the situation with other European cities
    corecore