73 research outputs found

    Natural cycles in unnatural soils

    Get PDF

    Synthesizing the evidence of nitrous oxide mitigation practices in agroecosystems

    Get PDF
    Nitrous oxide (N2_2O) emissions from agricultural soils are the main source of atmospheric N2_2O, a potent greenhouse gas and key ozone-depleting substance. Several agricultural practices with potential to mitigate N2_2O emissions have been tested worldwide. However, to guide policymaking for reducing N2_2O emissions from agricultural soils, it is necessary to better understand the overall performance and variability of mitigation practices and identify those requiring further investigation. We performed a systematic review and a second-order meta-analysis to assess the abatement efficiency of N2_2O mitigation practices from agricultural soils. We used 27 meta-analyses including 41 effect sizes based on 1119 primary studies. Technology-driven solutions (e.g. enhanced-efficiency fertilizers, drip irrigation, and biochar) and optimization of fertilizer rate have considerable mitigation potential. Agroecological mitigation practices (e.g. organic fertilizer and reduced tillage), while potentially contributing to soil quality and carbon storage, may enhance N2_2O emissions and only lead to reductions under certain pedoclimatic and farming conditions. Other mitigation practices (e.g. lime amendment or crop residue removal) led to marginal N2_2O decreases. Despite the variable mitigation potential, evidencing the context-dependency of N2_2O reductions and tradeoffs, several mitigation practices may maintain or increase crop production, representing relevant alternatives for policymaking to reduce greenhouse gas emissions and safeguard food security

    Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops

    Full text link
    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4+ and NO3−) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO2 emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3−-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation

    Role of maize stover incorporation on nitrogen oxide emissions in a non-irrigated Mediterranean barley field.

    Full text link
    Aims Agricultural soils in semiarid Mediterranean areas are characterized by low organic matter contents and low fertility levels. Application of crop residues and/or manures as amendments is a cost-effective and sustainable alternative to overcome this problem. However, these management practices may induce important changes in the nitrogen oxide emissions from these agroecosystems, with additional impacts on carbon dioxide emissions. In this context, a field experiment was carried out with a barley (Hordeum vulgare L.) crop under Mediterranean conditions to evaluate the effect of combining maize (Zea mays L.) residues and N fertilizer inputs (organic and/or mineral) on these emissions. Methods Crop yield and N uptake, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification capacity, N2O, NO and CO2 fluxes were measured during the growing season. Results The incorporation of maize stover increased N2O emissions during the experimental period by c. 105 %. Conversely, NO emissions were significantly reduced in the plots amended with crop residues. The partial substitution of urea by pig slurry reduced net N2O emissions by 46 and 39 %, with and without the incorporation of crop residues respectively. Net emissions of NO were reduced 38 and 17 % for the same treatments. Molar DOC:NO 3 − ratio was found to be a robust predictor of N2O and NO fluxes. Conclusions The main effect of the interaction between crop residue and N fertilizer application occurred in the medium term (4–6 month after application), enhancing N2O emissions and decreasing NO emissions as consequence of residue incorporation. The substitution of urea by pig slurry can be considered a good management strategy since N2O and NO emissions were reduced by the use of the organic residue

    Earthworms affect reactive surface area and thereby phosphate solubility in iron-(hydr)oxide dominated soils

    Get PDF
    Sustainability of agricultural systems is at stake, as phosphorus (P) is a non-renewable resource while its global reserves are limited. Stimulating earthworm activity can be a technology to increase the level of readily plant-available phosphate (PO4_4). However, conclusive evidence on the mechanisms underlying an earthworm-enhanced PO4_4 solubility is yet missing. This study aimed to reveal possibly overlooked pathways by which earthworms affect PO4_4 solubility, and quantify the relative importance of all contributing mechanisms. Therefore, we set up a greenhouse pot experiment in which we investigated the large increase in water-extractable PO4_4 in casts of three earthworm species (Lumbricus rubellus, Aporrectodea caliginosa, Lumbricus terrestris) in soils with either predominantly Fe- or Al-(hydr)oxides. Oxalate-extractable PO4_4 was increased in earthworm casts compared to bulk soil which can be attributed to the mineralisation of natural organic matter (NOM). Surface complexation modelling was used to elucidate the mechanisms that control earthworm-enhanced PO4_4 solubility. The results of our modelling showed that the increase in pH in earthworm casts relative to bulk soil affects PO4_4 solubility only to a minor extent. Besides NOM mineralisation, two major mechanisms contributing to earthworm-enhanced PO4_4 solubility are (i) a decrease in the reactive surface area (RSA) of the metal-(hydr)oxide fraction; and (ii) a decrease in the competition between NOM and PO4_4 for binding sites of the metal-(hydr)oxides. As the newly discovered decrease of the RSA was only found for Fe-(hydr)oxide-dominated soils, earthworms have the largest potential to enhance PO4_4 solubility in those soils

    Long‐term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems

    Get PDF
    Increased human‐derived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how N‐induced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with N‐induced P limitation. Here we show, using a meta‐analysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas short‐term N loading (≤5 years) significantly increased soil phosphatase activity by 28%, long‐term N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either short‐ or long‐term studies. Together, these results suggest that N‐induced P limitation in ecosystems is alleviated in the long‐term through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.This study was funded by Aarhus University Centre for Circular Bioeconomy, Aarhus University Research Foundation AUFF Starting Grants (AUFF-E-2019-7-1), and Marie Skłodowska-Curie Individual Fellowship H2020-MSCA-IF-2018 (no. 839806). Ji Chen acknowledges funding support from the National Natural Science Foundation of China (41701292) and China Postdoctoral Science Foundation (2017M610647, 2018T111091) when constructing the databases. César Terrer was supported by a Lawrence Fellow award through Lawrence Livermore National Laboratory (LLNL). This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DEAC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 20-ERD-055. Fernando T. Maestre was supported by the European Research Council (ERC Grant agreement 647038 [BIODESERT]) and Generalitat Valenciana (CIDEGENT/2018/041)

    Soil biochar amendment in a nature restoration area: effects on plant productivity and community composition

    Get PDF
    Abstract. Biochar (pyrolyzed biomass) amendment to soils has been shown to have a multitude of positive effects, e.g., on crop yield, soil quality, nutrient cycling, and carbon sequestration. So far the majority of studies have focused on agricultural systems, typically with relatively low species diversity and annual cropping schemes. How biochar amendment affects plant communities in more complex and diverse ecosystems that can evolve over time is largely unknown. We investigated such effects in a field experiment at a Dutch nature restoration area. In April 2011, we set up an experiment using biochar produced from cuttings collected from a local natural grassland. The material was pyrolyzed at 4008C or at 6008C. After biochar or residue (non-pyrolyzed cuttings) application (10 Mg/ha), all plots, including control (0 Mg/ ha) plots, were sown with an 18-species grassland mixture. In August 2011, we determined characteristics of the developed plant community, as well as soil nutrient status. Biochar amendment did not alter total plant productivity, but it had a strong and significant effect on plant community composition. Legumes were three times as abundant and individual legume plants increased four times in biomass in plots that received biochar as compared to the control treatment. Biomass of the most abundant forb (Plantago lanceolata) was not affected by biochar addition. Available phosphorous, potassium, and pH were significantly higher in soils that received biochar than in Control soils. The rate of biological nitrogen fixation and seed germination were not altered by biochar amendment, but the total amount of biological N fixed per Trifolium pratense (red clover) plant was more than four times greater in biochar-amended soil. This study demonstrates that biochar amendment has a strong and rapid effect on plant communities and soil nutrients. Over time these changes may cascade up to other trophic groups, including above-and belowground organisms. Our results emphasize the need for long-term studies that examine not only the short-term effects of biochar amendment, but also follow how these effects evolve over time and affect ecosystem functioning
    • …
    corecore