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Abstract
Nitrous oxide (N2O) emissions from agricultural soils are the main source of atmospheric N2O, a
potent greenhouse gas and key ozone-depleting substance. Several agricultural practices with
potential to mitigate N2O emissions have been tested worldwide. However, to guide policymaking
for reducing N2O emissions from agricultural soils, it is necessary to better understand the overall
performance and variability of mitigation practices and identify those requiring further
investigation. We performed a systematic review and a second-order meta-analysis to assess the
abatement efficiency of N2Omitigation practices from agricultural soils. We used 27 meta-analyses
including 41 effect sizes based on 1119 primary studies. Technology-driven solutions (e.g.
enhanced-efficiency fertilizers, drip irrigation, and biochar) and optimization of fertilizer rate have
considerable mitigation potential. Agroecological mitigation practices (e.g. organic fertilizer and
reduced tillage), while potentially contributing to soil quality and carbon storage, may enhance
N2O emissions and only lead to reductions under certain pedoclimatic and farming conditions.
Other mitigation practices (e.g. lime amendment or crop residue removal) led to marginal N2O
decreases. Despite the variable mitigation potential, evidencing the context-dependency of N2O
reductions and tradeoffs, several mitigation practices may maintain or increase crop production,
representing relevant alternatives for policymaking to reduce greenhouse gas emissions and
safeguard food security.

1. Introduction

Increasing atmospheric concentrations of nitrous
oxide (N2O) is a major driver of climate change
and stratospheric ozone depletion (Ravishankara et al
2009, IPCC 2021). Agriculture is the primary anthro-
pogenic source of N2O, contributing globally about
3.8 (2.5–5.8) Tg N yr−1 or 22% to the atmospheric
N2O budget (Tian et al 2020). Direct soil N2O
emissions from agroecosystems account for 61% of
anthropogenic emissions (Tian et al 2020). Due to the
projected increases in food demand (van Dijk et al
2021), agricultural land area, and fertilizer use, the

associated N2O emissions are expected to rise over
the coming decades (Reay et al 2012, Davidson and
Kanter 2014). Climate change may further exacer-
bate N2O emissions from agricultural soils (Montzka
et al 2011, Bowles et al 2018). This daunting pic-
ture challenges stated policy goals to curb green-
house gas (GHG) emissions from agriculture, such
as the Paris Agreement (United Nations Framework
Convention on Climate Change 2015, Clark et al
2020). However, active management of agroecosys-
tems offers opportunities for N2Omitigation without
jeopardizing (perhaps even increasing) food produc-
tion (Smith et al 2008, Snyder et al 2009).
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N2O emission reductions are best achieved by
altering the environmental factors that promote N2O
production and release (most prominently soil aera-
tion, soil N content, C availability, and soil pH), by
inhibiting biochemical pathways during which N2O
is produced using soil additives, or by precise Nman-
agement to minimize excess soil N inputs (Paustian
et al 2016). A wide range of mitigation practices for
N2Oabatement has been proposed and tested at field-
scale (Snyder et al 2014). Biochar (Dawar et al 2021),
organic amendments (Li et al 2021, Ruangcharus et al
2021), conservation tillage (Arango and Rice 2021,
Pelster et al 2021), and enhanced-efficiency fertilizers
(Friedl et al 2020, Nishimura et al 2021), among oth-
ers, have been assessed worldwide, with contrasting
results. For instance, while biochar amendments fre-
quently reduce N2O emissions (Schmidt et al 2021),
the effects of organic amendments are equivocal
(Lazcano et al 2021).

As a result of the burgeoning of laboratory and
field-scale experiments, several meta-analyses syn-
thesizing empirical results from individual mitiga-
tion practices have been published in recent years
(e.g. Akiyama et al 2010, Cayuela et al 2014, Zhang
et al 2020a). While meta-analyses may differ in scope,
methods, and geographic scale, they are compar-
able when they assess the same response (i.e. soil
N2O emission) for an intervention type (i.e. mitiga-
tion practice). However, results from meta-analyses
regarding the same mitigation practice do not always
confirm each other due to the variability of the
experimental results and data collection procedures
(e.g. databases, sample size, language, and qual-
ity criteria). In this context, combining a system-
atic review (i.e. high-level review using rigorous and
explicit accountable research methods; Gough et al
2017) and second-order meta-analysis (i.e. meta-
analysis of meta-analyses; Hunter and Schmidt 2004)
provides a robust framework to integrate and syn-
thesize cumulative evidence-based knowledge of N2O
mitigation practices. Specifically, second-order meta-
analysis allows to consolidate research quantitatively
by assimilating and gauging meta-analyses grounded
on diverse designs, samples, and variables for high-
level generalization (Castellanos andVerdú 2012) and
to ascertain true effects (i.e. non-artifactual, by pool-
ing the effects sizes to obtain a larger sample size that
reduces uncertainties) for multiple meta-analyses,
even when they report contrasting results (Schmidt
and Oh 2013, Tamburini et al 2020). Therefore, this
tool can be used to advance our understanding of
the variability and performance of N2O mitigation
practices. The fast-growing number of studies assess-
ing N2O mitigation practices and synthesis-based
research allows to simultaneously compare the N2O
mitigation potential of prominent mitigation prac-
tices, thus enabling a robust ranking of their mit-
igation efficiency. This information is crucial to
guide policymaking to reduce GHG emissions from

agricultural soils and identify mitigation measures
requiring further research before implementation.

The objective of this study was to understand the
effect of various mitigation practices on N2O emis-
sions. Therefore, we conducted a narrative and quant-
itative synthesis of published meta-analyses focused
on N2O emissions from agricultural soils. Specific-
ally, we conducted a systematic review combined with
a second-order meta-analysis of 27 meta-analyses,
including 41 effect sizes (obtained from 1119 primary
studies and 3700 pairwise comparisons).

2. Material andmethods

2.1. Protocol and reporting
The initial protocol of the study was pre-registered
on the Open Science Framework before data col-
lection and analysis (https://doi.org/10.17605/osf.io/
2fjhw). The reporting guidelines suggested in ROSES
(Reporting standards for Systematic Evidence Syn-
thesis; Haddaway et al 2018) were followed where
applicable (figure S1). Data processing, analysis,
and figure generation were executed using R v.4.0.3
(R Core Team 2020).

2.2. Systematic review
2.2.1. Literature search strategy
A systematic search combined with a semi-automatic
co-occurrence network (Grames et al 2019) was per-
formed to identify published meta-analyses. We used
ISI Web of Science and SCOPUS databases and the
search engine Google Scholar. Our search covered all
articles having titles, abstracts, or keywords in Eng-
lish, with no restrictions onpublication type. The cut-
off date wasMay 2021. Further details of the literature
search (e.g. keywords) can be found in Supplement-
ary information S1.

2.2.2. Eligibility criteria
After removing duplications (figure S1), the articles
were screened by title and abstract to meet the eli-
gibility criteria. The fundamental eligibility criterion
was that the study should be a meta-analysis focused
on at least one mitigation practice for N2O emis-
sion from agroecosystems (tables S1 and S2). This
step resulted in 142 articles. Additional eligibility cri-
teria were considered during full-text screening: (a)
Meta-analyses needed to assess the impact of mitig-
ation practices on agricultural soils in peer-reviewed
publications. For instance, if a meta-analysis repor-
ted effect sizes for different land uses or ecosystem
types, only those referring to agricultural soils were
retained (e.g. Wang et al 2021). (b) Systems compar-
isons were excluded if pairwise comparisons of the
mitigation practice were not performed. (c) Regional
and national level meta-analyses were included (e.g.
Aguilera et al 2013,Gao et al 2021) due to their extens-
ive geographical scope. However, meta-analyses with
small regional scope (i.e. region within a country)
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were not considered (e.g. Xu et al 2017) due to lim-
ited sample size. (d) The studies had to provide clear
information regarding what was considered treat-
ment and control. (e) The effect size of the mitigation
practice was calculated using formal meta-analytic
methodologies. (f) The precision of the effect size
had to be indicated (i.e. standard error or confidence
interval). (g) Meta-analyses in which primary stud-
ieswere fully considered inmore recentmeta-analyses
were excluded (e.g. Akiyama et al 2010). (h) The list
of primary studies had to be provided. Authors were
contacted when the complete list of references was
unavailable from the publication (e.g. Huang et al
2018). Removal of duplicates and screening of articles
were performed using CADIMA (Kohl et al 2018).
After this step, the database consisted of 57 articles
(figure S1).

2.2.3. Considerations of statistical independence
The use of the same primary studies in different
meta-analyses focused on the same N2O mitiga-
tion practice can be a source of non-independence
amongmeta-analyses. To overcome this type of pseu-
doreplication, we quantified the overlap percent-
age between primary studies (figure S2). This res-
ulted in one additional eligibility criterion: (i) only
meta-analyses with less than 30% overlap of primary
studies were retained in the database (Tamim et al
2011, Tamburini et al 2020). When the 30% per-
centage was exceeded, the rationale for deciding what
study should be retained was that meta-analyses with
a higher number of primary studies and rigorous
methodology were preferred (i.e. high-quality stud-
ies according to table S2; see section 2.2.5). A total
of 28 articles were considered statistically independ-
ent (27 in English and 1 in Chinese). The visualiza-
tion for assessing statistical independence (figure S2)
was implemented using theR-package tidygraph 1.2.0
(Pedersen 2020).

2.2.4. Data extraction and effect sizes
Study identification characteristics (e.g. title, author,
and publication year), contextual information (e.g.
mitigation practice and geographical range),method-
ological procedures (e.g. literature search strategy and
experimental scale), and data analysis features (e.g.
statistical model, effect size type, and precision indic-
ator) were extracted from the meta-analyses. Data
from text and tables were directly obtained from the
study, while data from figures were extracted using
Engauge Digitizer v12.1 (Mitchell et al 2019). If a
study reported sub-group analysis but not the overall
effect size of the N2O mitigation practice, we calcu-
lated the overall effect size with a meta-analytic fixed-
effect model, which pools the partial effect sizes of the
sub-group analyses (e.g. Xia et al 2017, Wang et al
2021). Sampling error variance was estimated using
the commonly reported 95% confidence intervals

(CIs) assuming a normal distribution (Castellanos
and Verdú 2012). We transformed all the effect sizes
(e.g. response ratio and percentage of change) to
a standard metric (i.e. log response ratio—lnRR).
However, we removed one study because we were
unable to transform the mean difference to lnRR
without the original data (Aliyu et al 2021). The sign
of the effect sizes was reversed when the contrast was
against the mitigation practice instead of the con-
trol treatment. The final dataset included 27 meta-
analysis studies (n) encompassing 41 effect sizes (k)
based on 1119 primary studies (m) with 3700 pair-
wise comparisons (l) (Supplementary data).

The N2O mitigation practices were (table S1):
biochar, crop residue removal instead of crop residue
retention, use of organic fertilizer instead of synthetic
fertilizer, use of cover crops instead of fallow soil
between cash crops, diversified crop rotation instead
of crop monoculture, optimization of fertilizer rate
(i.e. according to total N crop requirement) com-
pared to conventional application rates, increased
fertilizer application frequency compared to single
fertilizer application, deep fertilization instead of
superficial fertilizer application, slow- or controlled
release fertilizer, nitrification inhibitor, urease inhib-
itor, combination of nitrification and urease inhib-
itors, lime amendment, no-tillage or reduced tillage
compared to conventional tillage, and drip irrigation
compared to traditional irrigation techniques such as
sprinkler or furrow irrigation. The proposedmechan-
isms bywhich these practicesmaymitigateN2Oemis-
sions are summarized based on the systematic review
in Supplementary information S2.

2.2.5. Methodologic quality of the meta-analyses
The quality of meta-analyses can differ widely due
to methodological aspects by which primary studies
are selected, the meta-analytic model used, and how
results are reported (Nakagawa et al 2017, Gurevitch
et al 2018, Pigott and Polanin 2020). To account for
this potential bias, we calculated a quality index (see
Tamim et al 2011, Beillouin et al 2021) based on 11
methodological criteria: (a) definition of the exper-
imental (i.e. mitigation practice) and control treat-
ment, (b) literature search strategy, (c) number of
databases and search engines used, (d) number of
original studies included, (e) eligibility criteria to
select primary studies, (f) statistical model, (g) aver-
age effect size and precision indicator, (h) weighting
procedure, (i) publication bias assessment, (j) avail-
ability of heterogeneity indicators, and (k) sensitiv-
ity assessment. Further description for each category
is provided in Supplementary information table S2.
Meta-analyses were ranked for each criterion with a
high score (2) or low score (1). The theoretical max-
imum value is 22. The sum of the scores defined the
general quality, which was used in further analysis
(see section 2.3.2).
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2.3. Second-order meta-analysis
2.3.1. Statistical model
The impact of the N2O mitigation practices was
assessed with a multi-level mixed meta-regression
model with a categorical predictor (i.e. moderator)
using the extracted overall effect sizes and corres-
ponding variance from every meta-analysis (i.e. not
the effect sizes derived from individual pairwise
observations included in each meta-analysis). The
form of the statistical model was:

θ̂ik = θ+βDg +wi + uik + eik (1)

with wi ∼ N
(
0,σ2

B

)
, uik ∼ N

(
0,σ2

W

)
, eik ∼ N(0,vik)

where θ̂ik is the estimate of the true effect size θ (inter-
cept) based on the kth effect size of the ith meta-
analysis, β is the regression coefficient (representing
the effect size difference) of the categorical predictor
Dg (mitigation practice), wi is the random effect
accounting for the variance between meta-analyses
(σ2

B), uik is the random effect accounting for the
variance within meta-analysis (σ2

W) and eik is the
sampling error with variance vik. Themodel was fitted
without intercept to obtain the parameter estimates
(θ̂ik) for each level of the categorical predictor.

The meta-analysis was weighted by the inverse
of the sampling variance of the effect sizes. The fol-
lowing nested random effect was assumed: meta-
analysis ID encompassing the effect sizes extracted
from the same meta-analysis, and effect size ID rep-
resenting the residual/within-meta-analysis variance.
Model parameters were calculated using the restricted
maximum likelihood estimator (Viechtbauer 2005).
Estimates were transformed to percentages of change
to ease interpretation. Estimates are presented with
their 95% CIs in square brackets throughout, and
statistical significance was assumed when CIs did not
span zero. Moreover, 95% prediction intervals (PIs)
were reported. CIs represent the range of the average
true effect to be found, and PIs the range in which
95% of effects are expected to occur in similar future
(or unknown) studies (IntHout et al 2016, Kim et al
2021). Significance tests of the estimates and the CIs
were computed assuming a z-distribution. The omni-
bus test of moderators (QM) was reported. The per-
centage of heterogeneity explained by the moder-
ator was estimated using R2

marginal (Nakagawa and
Schielzeth 2013). The meta-analysis was fitted using
the R-package metafor v.3.0–2 (Viechtbauer 2010).
Results of the main effect model were graphically
represented as lookalike forest graphics (i.e. orch-
ard plots) using the R-package orchaRd v.0.0.0.9000
(Nakagawa et al 2020).

2.3.2. Publication bias and sensitivity analysis
Publication bias was explored with Funnel plots
and Egger’s Regression tests (Sterne et al 2006,
Sterne and Egger 2006). We fitted multi-level mixed

meta-regressionmodels, including the standard error
and sample size as moderators separately. The poten-
tial presence of bias was identified based on the
significant deviation of the model intercept from
zero. Similarly, influential studies were identified
based on the leverage (i.e. hat values) extracted
from the hat matrix and potential outliers based
on the standardized residuals (Viechtbauer 2020).
Studies with large influence were those with two
times the average leverage (Habeck and Schultz 2015),
whereas possible outliers were those studies with
high standardized residuals.Meta-regressions includ-
ing continuous moderators were plotted with the
R-package ggplot2 v.3.3.5 (Wickham 2016).

We used two different approaches as a sensitiv-
ity analysis to test the robustness of the multi-level
mixed meta-regression model. We used a conservat-
ive estimation with the Knapp-Hartung adjustment
(Knapp and Hartung 2003, van Aert and Jackson
2019) based on a t-distribution. This adjustment con-
trols for the uncertainty in the estimate of between-
study heterogeneity affecting the calculation of the
standard error, the hypothesis tests, and CI using the
Satterthwaite adjustment. To incorporate the quality
of the meta-analyses, a quality effects model was fit-
ted (Doi et al 2015). Consequently, the weights of the
effect sizes were compensated by the rescaled quality
index (based on the highest index) obtained for each
meta-analysis, thereby reducing the weight of low-
quality studies.

3. Results

3.1. Systematic review
We found that 46% of the effect sizes showed sig-
nificant N2O reductions across the mitigation prac-
tices, while 34% showed neutral responses and 20%
significant increases in N2O emissions (figure 1).
Among all the mitigation practices, the use of organic
fertilizer (k = 6 effect sizes), nitrification inhib-
itor (k= 5), biochar amendment (k = 4), and crop
residue removal (k = 4) were the most frequently
assessed. Nitrification inhibitors (k = 5), biochar
amendment (k = 3), and slow- or controlled release
fertilizer (k= 3) reported a high number of effect
sizes with significant N2O reductions compared to
other potential mitigation practices. However, the use
of nitrification inhibitors was the only practice con-
sistently showing N2O reductions across all meta-
analyses (figure 1). Less explored (e.g. optimization of
fertilizer rate or high fertilizer application frequency)
andmore recentmeta-analyzedN2Omitigation prac-
tices (e.g. lime amendment and drip irrigation) resul-
ted in single effect sizes (figure 1). Most of the meta-
analyses had a global scope (70%), followed by the
country scale (China with 16%) (figure S4(A)). The
overall quality score of the meta-analyses was relat-
ively high, ranging from 14 to 22 (figure S4(B)), with
a median of 18 (theoretical maximum value= 22).
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3.2. Second-order meta-analysis
The efficiency of the mitigation practices for curb-
ing N2O emissions was highly variable (test of
moderator QM = 208 (p < 0.0001)); the moder-
ator explained 83% of heterogeneity (R2

marginal =
0.829). Considerable N2O reductions were found for
biochar amendment (−26.6%), optimization of fer-
tilizer rate (−31.2%), slow- or controlled release fer-
tilizer (−33.0%), nitrification inhibitors (−44.1%),
urease inhibitors (−22.5%), combined use of nitrific-
ation and urease inhibitors (−49.4%), and drip irrig-
ation (−26.5%). The use of greater frequency of fer-
tilizer application (−5.4% [−26.9 to+22.3%]), crop
residue removal (−2.6% [−14.2 to +10.6%]), and
lime amendment (−9.0% [−30.8 to+19.7%]) led to
mixed results, though across all studies minor reduc-
tions in N2O emissions were observed. The use of
organic fertilizer (+4.8% [−7.2 to +18.4%]), diver-
sified crop rotation (+8.6% [−17.1 to +42.3%]),
deep fertilization (+18.6% [−6.9 to +51.1%]), no-
tillage (+11.7% [−8.9 to +37.0%]) or reduced till-
age (+3.7% [−11.1 to+21.0%]) resulted inmarginal
increases in N2O emissions as compared to standard
practices. The use of cover crops increased N2O emis-
sion by+36.7% (figure 2).

There was no clear evidence of publication bias
for the second-order meta-analysis. Based on the
standard error fit (intercept = −0.207, p = 0.001;
R2
marginal = 0.088), effect sizes tended to become mar-

ginally smaller as standard error increased (figure
S5(A)). Nevertheless, there was no evidence of pub-
lication bias derived from the sample size fit (inter-
cept = −0.061, p = 0.386; R2

marginal = 0.046); effect
sizes tended to become marginally smaller as sample
size (i.e. number of pairwise comparisons) increased
(figure S5(B)). Influential studies were only identi-
fied for mitigation practices based on a single meta-
analysis (figure S6); an effect size with high standard-
ized residual (belonging to diversified crop rotation
under paddy soil conditions) was identified (figure
S6). The two approaches of the sensitivity analysis
showed that our results are robust, as all the differ-
ent models yielded similar effect sizes to our primary
model (table S3).

4. Discussion

Several technology-driven solutions showed substan-
tial N2O mitigation potentials across meta-analyses
(figure 2). These included biochar, slow- or con-
trolled release fertilizers, nitrification inhibitors, and
urease inhibitors. Drip irrigation and the combin-
ation of both inhibitor types, also reduced N2O
emissions, based on one effect size each. The main
goal behind the development of these technolo-
gies was originally not to mitigate N2O emissions.
Biochar was valued for its capacity to retain C in
the long term, thereby potentially increasing soil C
sequestration (Wu et al 2019). Enhanced-efficiency

fertilizers were developed to achieve better synchron-
icity between N release and crop uptake, thereby
increasing uptake efficiency while simultaneously
reducing nitrate leaching (slow- or controlled release
fertilizer and nitrification inhibitors) or ammonia
(NH3) volatilization (urease inhibitors) (Akiyama
et al 2010, Timilsena et al 2015, Li et al 2018). Drip
irrigation is widely used as an irrigation practice for
optimizing water supply to high-value crops (e.g.
vegetables, grain crops; Vallejo et al 2014, Zhang
et al 2020b, Qasim et al 2021), thus increasing crop
water use efficiency as compared to flood or sprink-
ler irrigation (van der Kooij et al 2013); 20% of cro-
pland worldwide is irrigated, contributing to 40%
of the world food production (The United Nations
World Water Development 2014). Although there
are potential tradeoffs linked to certain technology-
driven options that need to be considered (e.g. nitri-
fication inhibitorsmay increase NH3 volatilization; Li
et al 2005, Pan et al 2016, Wu et al 2021), our results
suggest that these management practices can achieve
substantial N2O reductions from agricultural soils.

As opposed to the technology-driven options,
agroecological practices tended to increaseN2Oemis-
sions (figure 2). Examples of these practices are the
use of organic fertilizer, diversifying crop rotations,
reduced/no-tillage, and the use of cover crops. Des-
pite the potential adverse impact on N2O, these
practices (not primarily conceived to abate N2O
emissions) are linked to a wide range of beneficial
effects, including enhanced soil biodiversity (Liu et al
2016, Venter et al 2016, Chen et al 2020, Kim et al
2020), lower weed infestation (Osipitan et al 2019),
increased nutrient retention (McDaniel et al 2014,
Chen et al 2018, Wei et al 2021), reduced water pol-
lution (Thapa et al 2018), reduced soil erosion (Sun
et al 2015), and other ecosystem services (Iverson
et al 2014, Lichtenberg et al 2017). From a GHG bal-
ance perspective, reduced/no-tillagemay increase soil
organic carbon (SOC), although this topic remains
widely debated (e.g. Baker et al 2007, Powlson et al
2014, Bai et al 2019). Cover crops may increase soil C
storage by 6%–16% (Bai et al 2019, Jian et al 2020).
Therefore, a unidimensional view focused on redu-
cing soil N2O emissions does not capture the mul-
tifunctional benefits of agroecological interventions
(Guenet et al 2021).

Most agroecological practices had a highly vari-
able effect on N2O emissions, highlighting the
need to better understand under which pedocli-
matic and management conditions such practices
may lead to N2O mitigation instead of stimulation.
For instance, the N2O mitigation of organic amend-
ments is primarily determined by their physicochem-
ical characteristics and N-fertilizer substitution rate
(Ren et al 2017, Zhang et al 2020a). Most of the avail-
able meta-analyses focused on solid manure, whereas
only one evaluated the effect of replacing synthetic
fertilizers with livestock slurrywith regard to soil N2O
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emissions (Aguilera et al 2013). Crop diversification
may reduce N2O emissions depending on the specific
crops within the rotation and fertilization schemes
(Ijaz et al 2019). However, understanding crop diver-
sification effects is challenging due to crop-specific
confounding variables (e.g. timing and rate of fertil-
izer application, different rooting depths) and meth-
odological constraints (e.g. continuous N2O meas-
urements over multiple years are required). These
reasonsmay explain the limited number of effect sizes
and corresponding primary sources for this manage-
ment option (figure 1). Even though conservation till-
age practices (i.e. reduced/no-tillage) may increase
N2O emissions, they could potentially decrease N2O
emissions in dry areas over time (van Kessel et al
2013, Mei et al 2018). The effect of cover crops on
N2O emissions varies with cover crop species (e.g.
legume and non-legume), termination date, and soil
incorporation (Basche et al 2014). It is necessary
to update meta-analytic results with the burgeoning
primary studies considering the temporal (includ-
ing non-growing season) and geographical effects on
N2O release, especially for diversified crop rotation
and cover crops.

While optimized fertilizer rate according to crop
needs showed important N2O reductions, increasing
the frequency of fertilizer applications, crop residue
removal, and lime application reduced N2O emis-
sions only marginally. This may be because the
N2O mitigation potential of these practices is highly
context-dependent. Crop residue removal may only
reduce N2O emissions when the residues are imma-
ture and have a low C/N ratio (Chen et al 2013,
Essich et al 2020, Abalos et al 2022); rainfall dis-
tribution determines the efficacy of split fertilizer
application (Abalos et al 2017, Song et al 2022);
lime-induced N2O abatement may only occur when
the soil pH is below a critical value, defined by the
liming material and application rate (Wang et al
2021). Better matching of crop N need and N sup-
ply through optimization of fertilizer rate offers sig-
nificant opportunities for N2O emission reductions
(Davidson and Kanter 2014), and it can be combined
with technology-driven solutions and agroecological
practices. However, predicting crop N need is dif-
ficult due to variable soil and weather conditions,
with increasing variability of environmental condi-
tions induced by climate change (Hénault et al 2012,
Reay et al 2012, Kanter et al 2016). Therefore, our
results imply that these practices must be assessed
on a case-by-case basis and at farm or regional
scale before recommending their adoption for N2O
mitigation.

Several policies and regulations aimed at curb-
ing agricultural N2O and other GHG emissions
have been launched recently, most of which require
drastic emission reductions in the near future (Rogelj
et al 2016, Clark et al 2020). For instance, Ireland

(agriculture contributes to 37% of GHG emis-
sions; Environmental Protection Agency 2021) com-
mitted to decreasing agricultural GHG emissions
by 22%–33% compared to 2017 levels by 2030
(Department of the Environment, Climate and
Communications 2021). Denmark’s agricultural sec-
tor, contributing 25% of the national total GHG
emissions, with N2O emissions accounting for 45%
(Nielsen et al 2021), pledged to reduce GHG emis-
sions by 55%–65% below 1990 levels by 2030 (Min-
istry of Finance 2021). Considering that the overall
range ofN2Omitigation potential for the technology-
driven solutions was 22%–49% (figure 2), our results
indicate that adopting a portfolio of strategies for
N2O mitigation at the field level may strongly con-
tribute to achieve these mitigation targets despite the
variability. Furthermore, since N2O emissions can
dominate the GHG balance of agricultural soils (Li
et al 2005, Lugato et al 2018, Autret et al 2019), failing
to incorporate N2O mitigation practices into envir-
onmental initiatives (e.g. carbon farming practices;
Tang et al 2016,Oldfield et al 2022)may hinder efforts
to obtain GHG emissions reductions. Policy efforts
should address the economic and social constraints
limiting the adoption of mitigation practices (Smith
et al 2007).

Although agriculture is a crucial sector for
the reduction of anthropogenic GHG emissions
(Wollenberg et al 2016, Frank et al 2018, Tian et al
2019, 2020, IPCC 2021), only 131 countries (cover-
ing 72% of global GHG emissions) are discussing,
have announced, or have adopted net-zero targets
(Höhne et al 2021). One of the reasons limiting inter-
national commitmentsmay be the perceived potential
tradeoffs between GHG mitigation and food pro-
duction (Frank et al 2017). However, several N2O
mitigation practices do not compromise biomass or
food production. Many of them tend to enhance
crop yields (see table S4 for references), includ-
ing biochar (9%–28% increase in yield) in tropical
regions predominantly, deep fertilization (4%–11%),
drip irrigation (12%), optimization of fertilizer rate
(1%), increased frequency of fertilizer application
(6%), lime amendment (36%), nitrification inhib-
itors (4%–10%), urease inhibitors (5%–10%), and
the combined use of inhibitors (1%–9%). The use of
slow- or controlled released fertilizers has uncertain
effects on crop production, whereas yield decline can
sometimes be observed with high substitution rate
of synthetic fertilizer by organic sources (no effect
to 14% reduction), reduced/no-tillage (no effect to
6% reduction), and crop residue removal (reduction
5%–8%). There is no consensus on the impact of
cover crops on yield, while diversified crop rotation
may have a positive effect (20%) (table S4). Efforts to
reduce N2O emissions from agricultural soils could
simultaneously improve food security. Therefore,
they should represent a priority in policy agendas,
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providing a tool to overcome barriers to implement-
ation (Snyder et al 2009, Kanter et al 2020).

A systematic review allows to identify knowledge
gaps. In addition, a second-order meta-analysis can
advance our understanding of differences and simil-
arities among N2O mitigation practices by aggregat-
ing results across numerous meta-analyses grounded
on hundreds of studies with thousands of pair-
wise comparisons. This approach can gauge the true
between-meta-analyses variability of mean effect size
values, and use this information to improve estima-
tion accuracy for each first-order meta-analytic mean
estimate (Schmidt and Oh 2013). For certain man-
agement practices, our second order meta-analysis
synthesizes a relatively low number of original meta-
analyses, which in some cases are based on relat-
ively small datasets. However, we contend that also
in these cases, a second-order meta-analysis provides
important advantages over first-order meta-analyses.
First, by combining data from more than one meta-
analysis, we increase statistical power. This is espe-
cially important in those cases when the number
of available studies is relatively low. Second, our
standardized approach ensures that overall treat-
ment effects are directly comparable and are not
affected by artifacts related to differences in meth-
odological approaches between individual first-order
meta-analyses. Yet, certain shortcomings can arise
from this generalization. Due to the nature of the
method and the specific factors controlling each
N2O mitigation strategy, further moderator analyses
(e.g. temporal dynamics, experimental scale, man-
agement practices, pedoclimatic features, and land
use) are unfeasible. This limits the capacity of this
methodology to provide region-specific recommend-
ations as effects may depend on pedoclimatic condi-
tions or field management, which can be better iden-
tified in first-order meta-analyses. To complement
our results and guide the implementation of the N2O
mitigation practices, the assessment of yield-scaled
emissions (e.g. van Groenigen et al 2010) would be
valuable.

Our synthesis exposes critical research gaps to
be filled in future studies. Due to the nature of
meta-analyses, the N2O reductions are mainly shown
for individual mitigation practices, but many of the
examined practices may be combined at the field
scale, leading to synergistic or antagonistic effects
on N2O emissions (e.g. Fuertes-Mendizábal et al
2019, Pokharel and Chang 2021). There is a need
to explore and document such interactions, includ-
ing the tradeoffs and long-term effects of potential
mitigation practices for designing cropping systems
to minimize N emissions while enhancing produc-
tion without compromising soil functions or services
(Power 2010, Bommarco et al 2013,Greiner et al 2017,
Bünemann et al 2018). Novel strategies with possible
N2Omitigation capacity (and their interactions with
more assessed mitigation practices) have not been

sufficiently studied to be meta-analytically studied.
Some examples are intercropping (Pappa et al 2011,
Huang et al 2019), biological nitrification and denitri-
fication inhibitors (Subbarao et al 2009, Bardon et al
2014), silicate additions (Vicca et al 2021), and inocu-
lants for legumes (Bakken and Frostegård 2020).

5. Conclusions

We present a second-order meta-analysis of the
effects of management practices on N2O emissions
from agricultural soils. Despite the intrinsic variab-
ility of N2O mitigation practices, technology-driven
solutions (enhanced-efficiency fertilizers, biochar,
and drip irrigation) and fertilizer rate optimization
may substantially reduce emissions in agroecosys-
tems. These practices may favorably be implemented
because they often increase crop production. On the
contrary, certain agroecological practices (e.g. use of
organic fertilizer) may exacerbate N2O release if they
are not carefully managed. Our exhaustive evidence
synthesis provides a state-of-the-art overview of the
potential for N2O abatement of the main available
mitigation strategies.
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