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Abstract. Biochar (pyrolyzed biomass) amendment to soils has been shown to have a
multitude of positive effects, e.g., on crop yield, soil quality, nutrient cycling, and carbon
sequestration. So far the majority of studies have focused on agricultural systems, typically
with relatively low species diversity and annual cropping schemes. How biochar amendment
affects plant communities in more complex and diverse ecosystems that can evolve over time is
largely unknown. We investigated such effects in a field experiment at a Dutch nature
restoration area.

In April 2011, we set up an experiment using biochar produced from cuttings collected
from a local natural grassland. The material was pyrolyzed at 4008C or at 6008C. After biochar
or residue (non-pyrolyzed cuttings) application (10 Mg/ha), all plots, including control (0 Mg/
ha) plots, were sown with an 18-species grassland mixture. In August 2011, we determined
characteristics of the developed plant community, as well as soil nutrient status.

Biochar amendment did not alter total plant productivity, but it had a strong and
significant effect on plant community composition. Legumes were three times as abundant and
individual legume plants increased four times in biomass in plots that received biochar as
compared to the control treatment. Biomass of the most abundant forb (Plantago lanceolata)
was not affected by biochar addition. Available phosphorous, potassium, and pH were
significantly higher in soils that received biochar than in Control soils. The rate of biological
nitrogen fixation and seed germination were not altered by biochar amendment, but the total
amount of biological N fixed per Trifolium pratense (red clover) plant was more than four
times greater in biochar-amended soil.

This study demonstrates that biochar amendment has a strong and rapid effect on plant
communities and soil nutrients. Over time these changes may cascade up to other trophic
groups, including above- and belowground organisms. Our results emphasize the need for
long-term studies that examine not only the short-term effects of biochar amendment, but also
follow how these effects evolve over time and affect ecosystem functioning.

Key words: biochar; biological nitrogen fixation; black carbon; carbon sequestration; charcoal; climate
change mitigation; compensatory dynamics; ecosystem functioning; nature restoration; plant nutrients; soil
nutrients.

INTRODUCTION

Soil amendment with biochar, which is pyrolyzed

biomass (Lehmann and Joseph 2009), is advocated as a

means to sequester carbon (C) in the soil and improve

soil fertility (Lehmann et al. 2006, Sohi et al. 2010,

Woolf et al. 2010). Biochar amendment to soils has been

reported to increase yields in various cropping systems

(e.g., Glaser et al. 2002, Jeffery et al. 2011, Kammann et

al. 2011, Vaccari et al. 2011, Spokas et al. 2012, Wang et

al. 2012). Also, several studies have claimed beneficial

effects of biochar with regard to reduction of nutrient

leaching and greenhouse gas emissions (e.g., Singh et al.

2010, Liu et al. 2011). While biochar has been shown to

be able to affect a variety of ecosystem services, the

effects are not always in the same direction nor of

similar magnitude (Jeffery et al. 2011).

Most studies examining biochar effects on plants have

used individual plants or have been performed in

monocultures in agricultural settings (as reviewed in

Jeffery et al. [2011]), which generally are nutrient-rich,

low in diversity, and have short, yearly cropping cycles.

Investigations with other sources of recalcitrant carbon

amended to soils, such as charcoal amended to tropical

soils (Glaser et al. 2002, Major et al. 2005), Amazonian

terra preta soils (Sombroek 1966), or the remains of
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natural fires in (boreal) forests (Mikan and Abrams

1996), suggest that recalcitrant carbon sources can affect

plant performance, plant competition, and ecosystem

functioning. So far, studies that examine the effects of

biochar on multiple plant species interactions and thus

on plant community composition are scarce, particularly

in natural ecosystems. Plant communities in natural

grasslands and in grassland restoration areas are

typically characterized by a higher diversity, and consist

of a larger proportion of perennial species, than

agricultural systems. Grassland systems are therefore

very suitable to study the consequences of soil biochar

amendment on plant–plant interactions and consequent

shifts in community composition. Moreover, biochar

application in nature restoration areas on former arable

fields has been suggested to immobilize the available

nitrogen, and is therefore thought to be a potential way

to reduce soil fertility of nutrient-rich, abandoned

agricultural fields, which is a prerequisite to restore

nature in these areas (Perry et al. 2010). The effect of

biochar on soil fertility seems contradictory: N in the

biochar may increase the nutrient status, but the very

high C content may immobilize N. Following this last

reasoning, several field studies have indeed shown that

hay or straw addition to the soil can increase microbial

nitrogen immobilization, and consequently decrease soil

N availability (Blumenthal et al. 2003, Kardol et al.

2009, Perry et al. 2010). Other studies have shown that

addition of activated carbon to restored grasslands can

reduce the establishment of exotic weeds in these fields

by affecting soil biota or by absorbing allelochemicals

(Callaway 2000, Kulmatiski 2011). Biochar addition

may also affect such soil conditions, depending on its

availability, although the effects of activated carbon

may not be directly translated to potential effects of

biochar, as activated carbon often has a higher

absorbing capacity and contains less nutrients (Angın
et al. 2013).

Results from a recent meta-analysis showed that

biochar amendment to agricultural soils increased

overall crop yield by ;10% (Jeffery et al. 2011).

Interestingly, the stimulating effect of biochar differed

between crop species. Productivity of radishes and soy

bean was increased, for example, but that of rye grass

diminished when biochar was added to the soil (Jeffery

et al. 2011). These results suggest that biochar addition

to soil may affect plant–plant interactions and may alter

plant community composition, as was also shown for

other charcoal sources (e.g., Major et al. 2005). Similar

results were found in an agricultural field trial with

maize and grass over three years, where the effects of

biochar amendment were also found to be crop

dependent (Jones et al. 2012), and in a forest system,

where the growth of two Quercus species was differen-

tially affected by charcoal addition (Mikan and Abrams

1996). These observations suggest that in natural

systems, where plant communities are highly diverse,

biochar amendment may alter the productivity, but also

the competitive hierarchy of plant species, which, over

time, may lead to alterations in plant community
composition.

Biochar amendment can change plant community
composition via two different mechanisms: (1) by

affecting seed germination rates and plant establish-
ment, and (2) by affecting the growth of particular plant

species or functional groups of plants. Studies that
examined how biochar amendment affects seed germi-
nation have yielded inconsistent data so far. Some

studies report that biochar does not affect germination
(i.e., Free et al. 2010, Jones et al. 2012), whereas others

find increased germination, even at relatively low
application rates (e.g., Van Zwieten et al. 2010). Solai-

man et al. (2011) observed species-dependent effects
(positive and negative) of biochar on the germination of

wheat, mung bean, and subterranean clover. Effects of
biochar on the growth of particular plant species or

groups of plants can be explained by biochar-mediated
changes in soil variables, such as increased soil pH (e.g.,

Van Zwieten et al. 2010, Jeffery et al. 2011, Jones et al.
2012), increased soil macro- and micronutrient avail-

ability (e.g., Lehmann et al. 2003, Rondon et al. 2007,
Jones et al. 2012), or altered soil water holding capacity

(Downie et al. 2007). All these conditions are known to
potentially affect the competitive outcome between plant
species and thus plant community composition. Le-

gumes in particular have been found to respond strongly
to the addition of biochar to soils (Jeffery et al. 2011).

In this study, we examined the effect of soil
amendment with biochar on plant productivity and

community composition in a species–rich restoration
grassland. We specifically focused on the effects of

biochar addition on germination, and, via altered soil
nutrient status, on the competitive performance of

different plant species. To test this, we set up a field
experiment in a nature restoration area in the Nether-

lands in 2011. The experiment consisted of four
treatments, two biochar treatments (biochar produced

from the same feedstock at 4008C or at 6008C), and two
control treatments, one in which we incorporated the

non-pyrolyzed biomass (i.e., hay residue), and a
treatment to which no substrate was added. We

examined the effects of two biochars originating from
the same feedstock but produced at two temperatures, to

test how the type of biochar would affect plant and soil
parameters. Biochars produced at higher temperatures
are predicted to be more recalcitrant and have higher C

content (Gundale and DeLuca 2006, Spokas 2010,
Zimmerman 2010).We hypothesized that biochar

amendment increases total plant productivity and alters
community composition as compared to the addition of

non-pyrolyzed biomass or no soil amendment.

MATERIAL AND METHODS

Experimental field site

To study the effects of biochar amendment on plant

community characteristics and soil nutrients, a field
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experiment was set up in a nature restoration area near

Ede, The Netherlands (528040 N, 058450 E). This area of

180 ha is of glacial origin (Saalien ice age) and is on a

sandy soil (93.9% sand, 5.3% silt, 3.4% clay). The soil is

characterized as a ‘‘holtpodzol’’ on coarse sand (gY30-

VIII; Stiboka 1975: map 40W), with a soil organic C

content of 2.8%. In this area, agriculture was abandoned

in 1996, and the field has been extensively grazed with

cattle since then. The experimental field site is fenced off.

Biochar production and characteristics

In October 2010, ;1 ha of the area was mowed and

the collected aboveground biomass was dried and used

for biochar production. First, the biomass was cut into

pieces of 2–3 cm. Part of the cuttings were pyrolyzed for

five minutes at 4008C or at 6008C at Biogreen, ETIA,

France, using a Biogreen 130 pyrolyzer with a contin-

uous flow of 10 kg/h. The remaining part of the cuttings

were not pyrolyzed, and were used as a non-pyrolyzed

soil amendment (hay residue). As the seed stock in the

biochar cuttings was killed during pyrolysis, the hay

residue was sterilized by gamma irradiation (.25 kGy

[kilograys] of gamma irradiation [Isotron, Ede, The

Netherlands]) in order to kill the seed stock.

Nutrient content (N, PO4, and K) and pH-H2O in the

biochars and hay residue were analyzed (n¼3) following

similar protocols as described for soil material.

Experimental field design

The field experiment started in April 2011 and

consisted of 4 treatments and 6 replicate blocks,

resulting in 24 plots in total, set up as a randomized

complete block design. The four treatments are:

incorporation of biochar produced at 4008C (Biochar

400), biochar produced at 6008C (Biochar 600), incor-

poration of the non-pyrolyzed cuttings from which the

biochar was produced (Hay residue), and a control

treatment in which no material was incorporated

(Control). Each plot measured 4 3 4 m, and plots were

separated by 1 m wide paths. Biochar and residue were

only incorporated within the inner 33 3 m of each 43 4

m plot to further increase the buffer zone between plots.

All measurements were conducted within the inner 33 3

m area of each plot.

Biochar and hay residue were applied at a rate of 1.3

kg/m2, which corresponds to an application rate of 1%
(m/m) or 10 Mg/ha. After applying the amendments to

the surface, the top 10–15 cm of the soil was mixed using

a rotavator. control plots were also rotavated. All plots

were then sown with an 18-species seed mixture: 7 forbs

(Achillea millefolium, Crepis capillaris, Hypericum per-

foratum, Hypochaeris radicata, Leucanthemum vulgare,

Linaria vulgaris, Plantago lanceolata), 7 grass species

(Agrostis capillaris, Anthoxanthum odoratum, Dactylis

glomerata, Festuca rubra, Holcus lanatus, Phleum

pratense, Poa pratensis), and 4 legume species (Lotus

corniculatus, Trifolium pratense, Trifolium repens, Vicia

cracca). Seeding density was ;5000 seeds/m2, and

species were mixed in an equal ratio based on seed

mass. Seeds were ordered from an commercial organic

seed supplier (De Bolderik, Wervershoof, The Nether-

lands). In October 2011 the field was mown and all

aboveground biomass was removed from the field. Paths

between the plots were mown once per month during the

growing season.

Soil nutrients

The effects of the soil amendments on soil nutrients

were measured twice: directly after the treatments were

initiated (April 2011), and at the end of the first growing

season (August 2011). Each time, six soil cores (3 cm

diameter and 10 cm depth) were taken per plot to

determine soil nutrients. Three cores were combined,

resulting in two mixed soil samples per plot. These

samples were dried at 408C for three days. Available N-

NO3, N-NH4, and P-PO4 were determined photometri-

cally (540 nm) in a 1:10 (m/v) 0.01 mol/L CaCl2 extract

(Houba et al. 1986, 2000, Kulhánek et al. 2009) using an

auto-analyzer (Skalar Analytical, Breda, The Nether-

lands). K was measured in the same extract on an atomic

absorption spectrometer (AA240FS; Varian, Palo Alto,

California, USA). Micronutrient contents of Al, As, B,

Ba, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb,

Se, Sn, Sr, Zn were measured in the same CaCl2 extracts,

using an ICP-MS (Element 2, Thermo X series; Thermo

Fisher Scientific, Waltham, Massachusetts, USA). Soil

pH was measured in a 1:5 (m/v) 1 mol/L KCl solution

using a WTW pH 522 probe (WTW, Weilheim,

Germany). Moisture content of the fresh field soil was

determined gravimetrically (1058C, 48 hours) and

organic matter content was determined by loss on

ignition (5508C, three hours).

Plant community composition, production and nutrient

content

In August 2011, at peak standing biomass, the

estimated percentage cover of each species was recorded

on a continuous scale by visual estimations in four 13 1

m quadrats per plot. In October, total aboveground

plant biomass was clipped at soil level in two 0.5 3 1 m

plots per plot. The biomass was dried at 708C for five

days, and weighed. For the two most abundant species

(Plantago lanceolata and Trifolium pratense), we clipped

the aboveground biomass of five randomly selected

individuals per plot. The plants were oven-dried ( 408C

for three days) and weighed. For three randomly

selected plants of both species, total N, P, and K

concentrations were measured using the oven-dried

biomass. These nutrients were also measured in three

randomly selected Holcus lanatus and Vicia cracca

individuals per plot. Dried plants were ground (to ;1

mm), homogenized per species per plot, and decom-

posed using H2SO4-Se and salicylic acid (Novozamsky

et al. 1983). Nutrients were subsequently analyzed as

described for the soil samples (see Soil nutrients).
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Biological nitrogen fixation

Biological N fixation (BNF) rates in the field by the
legumes T. pratense and V. cracca were determined using

the natural abundance method, which is based on the
natural 15N enrichment of plant-available soil N relative

to atmospheric N2 (Shearer and Kohl 1986). As non-N
fixing reference species, three Leucanthemum vulgare and

P. lanceolata plants were selected in each plot. All plants
were dried (408C, three days) and chopped to ;1 mm

size. The three individuals per species per plot were
homogenized, and a subsample of the mixture was ball

milled. Total C and N content, and the d15N signature of
the plants were determined using a PDZ Europa

ANCA-GSL elemental analyzer interfaced to a PDZ
Europa 20–20 isotope ratio mass spectrometer (Sercon

Limited, Cheshire, UK) at the UC Davis Stable Isotope
Facility, Davis, California, USA. The percentage of

plant-derived N from atmospheric N2 (%Ndfa) was
calculated according to Shearer and Kohl (1986):
%Ndfa ¼ 100 3 ((d15Nref � d15Nleg)/(d15Nref � c)),

where d15Nref is the average d15N of the non-fixing
reference plants, d15Nleg is d15N of the legume, and c is a

standard value, the d15N value of legumes without BNF.
As a value for the constant c we used the minimal d15N
value we observed for each of the investigated species.
Total Ndfa per T. pratense plant per treatment was

calculated as: %Ndfa 3 plant N content 3 plant dry
mass.

Germination

The effect of soil amendment with biochar on the
germination rate of each of the 18 sown species was

tested in a laboratory experiment in petri dishes with soil
with or without addition of 1% (m/m) biochar 600. Each

petri dish contained 50 g of field soil (17% moisture
content). Sixteen surface-sterilized (1 minute in 1%
bleach solution) seeds per species were placed on top

of the soil in a 43 4 grid. Each treatment was replicated
five times per species, resulting in 2 3 5 3 18¼ 180 petri

dishes. Petri dishes were stored at room temperature,
brought back to their initial mass twice a week, and

germination was checked every two or three days. The
experiment was finished when no new seeds had

germinated for one week. Total percentage germination
was determined after 36 days.

Data analyses

Data were analyzed using univariate (Genstat 14;
Payne et al. 2008) or multivariate statistics (Canoco

4.55; Ter Braak and Šmilauer 2002). For all statistical
analyses, data from multiple samples taken within one

field plot were averaged before analyses, as they are
pseudoreplicates. This resulted in 24 data points for all
analyses of data collected from the field experiment

(four treatments 3 six replicate blocks).
Univariate analyses.—All treatment effects (Biochar

400, Biochar 600 [the number refers to the temperature
used during pyrolysis], Hay residue, and Control

treatment) were analyzed using analysis of variance

(ANOVA). When analyses included different plant
species, a two-way ANOVA with species identity and

treatment as main factors, including their interaction,
was conducted. All analyses of data of the field

experiment included block identity as random factor.
Individual comparisons were based on a Tukey’s HSD
post hoc test. Before conducting ANOVA, data were

checked for homogeneity of variances using Cochran’s,
Hartley’s, and Bartlett tests (P , 0.01) and for

normality by inspection of the normal-probability plot.
The percentage germination in petri dishes was com-

pared using two-way ANOVA with species identity and
biochar addition (with/without) as main factors. All

ANOVA tests included the interaction between factors,
but only significant interactions are described in the text.

To fulfill requirements of normality, soil nutrients and
biomass were log-transformed, percentage data were

arcsine-transformed, and total percentage cover and
germination were square root-transformed prior to

statistical analyses.
Multivariate analyses.—The composition of the plant

communities in the different treatments was analyzed
using multivariate statistics. Detrended correspondence

analysis (DCA) indicated that linear analyses were most
appropriate; the longest gradient was ,3 (Lepš et al.
2003). Community composition was described using

principal components analysis (PCA) and treatment
effects on community composition were tested using

redundancy analysis (RDA). Significant differences
between treatments were inferred by Monte Carlo

permutation tests (999 permutations). Plant community
cover data was log-transformed prior to analyses.

Species that were recorded on less than three occasions
were excluded from these analyses.

RESULTS

Characteristics of soil amendments

Total C and N content of the biochar produced at
6008C were significantly higher than that of the biochar
produced at 4008C and the hay residue (Table 1). Both

biochar types had a pH that was significantly higher
than that of the hay residue (Table 1). Extractable PO4

was three times higher in the biochar produced at 4008C
than in biochar produced at 6008C. Potassium levels in

both biochars were high, but did not differ between the
two types (Table 1).

Soil nutrients

At the start of the field experiment, directly following
soil amendment, there were no significant differences

between treatments with respect to soil nutrients or pH
(Table 2). However, at the end of the first growing

season, available K was two times higher and pH 0.3
units higher in both biochar treatments than in the
Control; Hay residue had intermediate values (K, F3,15¼
9.40, P , 0.001; pH, F3,15 ¼ 6.82, P ¼ 0.004; Table 2).
Extractable PO4 was significantly higher in the Biochar
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400 treatment than in the Control treatment (F3,15¼5.22,

P ¼ 0.01; Table 2). The micronutrients Cd and Zn were

significantly lower in the Biochar 600 treatment than in

the Hay residue or Control treatment, respectively; and

Pb was significantly higher in the Biochar 600 treatment

than in the Control treatment (data not shown).

Plant community composition and production

In August, a total of 39 plant species were recorded in

the experimental plots, among which were 17 of the 18

species that were sown; only H. perforatum did not

establish (Appendix: Table A1). Twenty-one non-sown

species, mainly early-successional agricultural weeds,

also established in the plots. The species P. lanceolata

and T. pratense were the two most abundant species and

made up .65% of the total plant cover (Appendix:

Table A1).

Plant community composition differed significantly

between treatments after the first growing season (RDA,

F¼ 2.68, P¼ 0.02, 34.9%), but the composition did not

differ between the two different biochar treatments (Fig.

1). The PCA analysis (Fig. 1) showed that the legume T.

pratense was most characteristic for the biochar plots

(34% abundance; Appendix: Table A1). The most

characteristic species in the Control plots was the grass

D. glomerata, whereas the hay residue plots were

characterized by bare soil (6%; Table 3). The same

pattern was observed when the abundance of plant

functional groups was compared. Legume cover was

significantly higher in the biochar plots than in the

Control plots (Table 3). In the hay residue plots grasses

were less abundant and non-sown species more abun-

dant than in the control plots (Table 3).

Total biomass production per square meter did not

differ between the treatments (F3,15¼0.95, P¼ 0.44; Fig.

2a). However, biomass of individual T. pratense plants

was four times higher in both biochar treatments than in

the Control and two times higher than in the Hay

residue treatment (F3,15 ¼ 13.01, P , 0.001; Fig. 2b).

Biomass of P. lanceolata did not differ significantly

between treatments (F3,15 ¼ 1.28, P ¼ 0.32; Fig. 2c).

Germination

Germination rates of the 18 species sown in the field

experiment differed significantly between species (F17, 144

¼ 47.3, P , 0.001), but were not altered by biochar

addition (F1, 144¼ 0.19, P¼ 0.66) (Appendix: Table A2).

There was no significant relationship between germina-

tion percentage and the abundance of a species in the

TABLE 2. Overview of the average soil nutrient content and soil characteristics of the four experimental treatments at the start of
the experiment (April 2011) and at harvest (August 2011). Means (6SE) and F and P values of ANOVA testing differences
between treatments are presented.

Date Parameters Biochar 400 Biochar 600 Hay residue Control F3,15 P

April 2011 mineral N (mg/kg) 8.7 6 1.4 8.0 6 2.00 9.6 6 2.8 6.9 6 1.2 0.08 0.97
N-NO3 (mg/kg) 5.6 6 0.3 5.0 6 1.76 5.5 6 0.9 4.8 6 0.7 0.02 0.99
N-NH4 (mg/kg) 3.1 6 1.6 3.0 6 0.95 4.1 6 2.1 2.1 6 1.0 0.47 0.71
P-PO4 (mg/kg) 4.4 6 0.2 4.2 6 0.18 4.1 6 0.3 4.4 6 0.4 0.37 0.77
pH KCl 5.07 6 0.06 4.92 6 0.06 4.99 6 0.09 4.96 6 0.05 0.44 0.72
moisture (%) 11.3 6 0.2 11.2 6 0.4 11.7 6 0.6 11.4 6 0.5 0.32 0.81
organic matter (%) 4.18 6 0.13 4.24 6 0.15 4.22 6 0.19 4.28 6 0.16 0.18 0.91

August 2011 mineral N (mg/kg) 5.8 6 1.3 8.0 6 1.8 9.7 6 2.0 3.4 6 1.1 1.28 0.32
N-NO3 (mg/kg) 0.5 6 0.2 0.6 6 0.2 0.9 6 0.2 0.2 6 0.1 2.82 0.08
N-NH4 (mg/kg) 5.3 6 1.3 7.4 6 1.8 8.9 6 1.9 3.2 6 1.1 0.83 0.50
P-PO4 (mg/kg) 4.9 6 0.2b 4.5 6 0.4ab 4.2 6 0.2ab 3.8 6 0.2a 5.22 0.01
K (mg/kg) 103.7 6 11.0b 108.9 6 12.4b 64.9 6 13.0ab 46.2 6 9.3a 9.40 ,0.001
pH KCl 5.21 6 0.04b 5.35 6 0.09b 5.12 6 0.06ab 4.93 6 0.04a 6.82 0.004
moisture (%) 15.1 6 0.3 15.7 6 0.2 15.2 6 0.3 14.8 6 0.3 0.84 0.49
organic matter (%) 4.8 6 0.1 4.9 6 0.1 4.6 6 0.1 4.5 6 0.1 1.78 0.19

Note: Within rows, entries followed by the same letter are not significantly different (P , 0.05) based on a Tukey’s HSD test
(n ¼ 6).

TABLE 1. Average percentage, before soil application, of total C and N in the biochar produced at 4008C (Biochar 400), or at
6008C (Biochar 600) and in the hay residue; and average mineral N, PO4, and K content of both biochars.

Parameters Biochar 400 Biochar 600 Hay residue F or t P

Total C (%) 41.8 6 0.3a 57.7 6 1.7b 41.7 6 0.3a F2,6 ¼ 78.4 ,0.001
Total N (%) 1.67 6 0.05a 2.05 6 0.03b 1.49 6 0.06a F2,6 ¼ 37.3 ,0.001
C:N 25.2 6 0.6 28.2 6 1.2 28.1 6 1.0 F2,6 ¼ 3.39 0.10
pH H2O 8.5 6 0.03b 9.82 6 0.03c 6.09 6 0.01a F2,6 ¼ 5283 ,0.001
Mineral N (mg/kg) 0.8 6 0.03 0.8 6 0.06 t1,4 ¼ 1.30 0.26
P-PO4 (mg/kg) 1.9 6 0.02b 0.6 6 0.03a t1,4 ¼ 22.0 ,0.001
K (mg/kg) 1620.8 6 24.2 1684.8 6 28.5 t1,4 ¼ 1.70 0.16

Notes: Means (6SE) and P values of ANOVA or two-sided t test testing differences between treatments are presented. Within
rows, entries followed by the same letter are not significantly different (P , 0.05) based on a Tukey’s HSD test (n¼ 3). Values in
boldface are significant.
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control or biochar plots in the field experiment (Biochar,

F1,16 ¼ 0.59, P ¼ 0.45; control, F1,16 ¼ 1.69, P ¼ 0.12).

Plant nutrients

Plant N concentration, measured in H. lanatus, P.

lanceolata, T. pratense, and V. cracca, was significantly

lower in the control than in the hay residue treatment,

but did not significantly differ from the biochar

treatments (N, F3,75 ¼ 3.14, P ¼ 0.03; Fig. 3). Plant K

concentration was significantly lower in the Control

than in the other treatments (K, F3,75¼ 12.2, P , 0.001;

Fig. 3). Plant P concentration did not differ significantly

between treatments (P, F3,75 ¼ 1.63, P ¼ 0.19; Fig. 3).

Plant K concentration was, for all species, significantly

positively correlated with soil K content (H. lanatus, P¼
0.04; P. lanceolata, P , 0.01; T. pretense, P ¼ 0.02; V.

cracca, P , 0.01), but this was not the case for plant and

soil N and P. Plant N, P, and K concentration also

differed significantly between plant species (all P ,

0.001; Fig. 3). There were no significant interactions

between treatments and plant species.

The N:K ratio was significantly higher in the control

treatment than in both biochar treatments (F3,75¼ 6.19,

P , 0.001). The P:K ratio was highest in the control

treatment (F3,75¼10.7, P , 0.001), but the N:P ratio did

not significantly differ between treatments (F3,75¼ 1.15,

P¼ 0.09). All ratios differed significantly between plant

species (Appendix: Fig. A1).

Biological nitrogen fixation

The percentage of N derived from the atmosphere

(%Ndfa) in the legumes T. pratense and V. cracca did

not differ between the two species (F1,35 ¼ 0.29, P ¼
0.59), nor between treatments (F3,35 ¼ 0.22, P ¼ 0.88;

Fig. 4a). However, total N derived from atmosphere per

T. pratense plant was significantly higher in both biochar

treatments than in the Control treatment (F3,20¼ 7.04, P

¼0.002; Fig. 4b), which was not due to enhanced rates of

biological fixation, but due to the higher biomass

accumulation of these plants.

DISCUSSION

Soil amendment with biochar in a natural grassland

resulted immediately in strong effects on plant commu-

nity composition and soil nutrient status in the first

growing season, even though total productivity was not

altered. The effects on plant community composition

were mainly due to a strong increase in legume

abundance and biomass production of individual T.

pratense plants following biochar amendment. We

discuss the mechanisms that may underlie these rapid

effects on plant community composition and the

beneficial effect on legumes.

Biochar does not alter plant productivity, but does change

community composition

In contrast to the results of a recent meta-analysis

(Jeffery et al. 2011), total plant productivity in our

experiment was not enhanced by the addition of 10 Mg/

FIG. 1. Principal components analysis (PCA) of sample
scores of the 24 field plots (Biochar 400, B4; Biochar 600, B6;
control, C; hay residue, R; and the block from which they
originated, e.g., B4-1), and the species scores (for plants present
in the plant communities) of the four plant species with the
highest scores. Species names are: Cirsium vulgare, Dactylis
glomerata, Plantago lanceolata, Trifolium pratense. The per-
centage of bare soil was also included in the analyses. The gray
circles indicate the means for the four experimental treatments:
Biochar 400 (B400), Biochar 600 (B600), Hay residue (Resi-
due), and Control.

TABLE 3. Percentage cover of the different plant functional groups per treatment in the experimental field site at harvest (August
2011).

Parameters Biochar 400 Biochar 600 Hay residue Control F3,15 P

Total cover (%) 136.0 6 9.2 133.2 6 8.2 115.6 6 6.3 115.0 6 2.6 2.70 0.08
Forbs (%) 90.5 6 6.0 86.4 6 3.6 91.0 6 5.1 92.5 6 2.9 1.64 0.22
Legumes (%) 39.3 6 8.4b 41.2 6 6.5b 20.3 6 3.6ab 14.4 6 2.5a 5.27 0.01
Grasses (%) 6.2 6 1.0ab 5.6 6 0.4ab 4.3 6 0.5a 8.1 6 1.1b 3.78 0.046
Non-sown species (%) 26.0 6 5.1ab 24.2 6 5.6ab 36.4 6 8.4b 15.8 6 2.1a 3.38 0.06
Bare soil (%) 3.1 6 0.8 3.2 6 0.6 5.9 6 1.4 2.8 6 0.6 2.86 0.07

Notes: Means 6 SE and F and P values of ANOVA testing differences between treatments are presented. Within rows, entries
followed by the same letter are not significantly different (P , 0.05) based on a Tukey’s HSD test (n ¼ 6).
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ha biochar. Although biochar did not affect total

aboveground productivity, biochar amendment affected

the composition of the plant community. We tested

specifically if this was due to biochar amendment

affecting germination rates or to the affect on the

growth of certain species or functional groups. We

found no evidence that biochar amendment changed

germination of any of the tested species. Therefore, it

seems more likely that the species-specific plant growth

and thus competitive hierarchy was changed, indicating

that compensatory dynamics may play a role in biochar-

amended plots. We analyzed several abiotic factors, such

as changes in moisture content, organic matter content,

soil N content, micronutrients, but we found no

FIG. 2. (a) Total plant biomass, (b) biomass of individual
Trifolium pratense plants, and (c) biomass of individual
Plantago lanceolata plants in the four experimental treatments;
values are mean 6 SE; n¼ 6. Different lowercase letters above
the bars indicate significant differences (P , 0.05), based on a
Tukey’s HSD post hoc test. Treatments: Biochar 400 (B400),
Biochar 600 (B600), Hay residue (Residue), and Control.

FIG. 3. (a) N, (b) P, and (c) K in shoots of Holcus lanatus,
Plantago lanceolata, Trifolium pratense, and Vicia cracca plants
that originated from four experimental field treatments:
Biochar 400 (white bars), Biochar 600 (light gray bars), Hay
residue (dark gray bars), and Control (black bars); values are
mean percentage (6SE). Significance of treatment and plant
species based on a two-way ANOVA are also presented (mean
6 SE). The treatment 3 plant species interaction was never
significant. Different lowercase letters indicate significant
differences (P , 0.05) between species, based on a Tukey’s
HSD post hoc test.
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significant differences between treatments on these

abiotic conditions. However, soil pH, soil PO4, and soil

K were significantly increased in biochar plots. This was

likely advantageous to legumes, since these are not

limited by N due to their symbiosis with N-fixing

bacteria, and thus may benefit disproportionally from

increased P and K availability in the soil. However, only

plant K concentration was significantly altered by

biochar addition, which would specifically point at the

importance of biochar-mediated K availability. Indi-

rectly, soil pH and nutrient status can also affect the soil

biotic community (e.g., Dumbrell et al. 2010), which in

turn could have affected the performance and compet-

itive ability of some plant species. Alternatively, biochar

addition in our study may have absorbed plant

allelochemicals and consequently have affected some

plant species, as has been shown for activated carbon

(Kulmatiski and Beard 2006, Callaway et al. 2011).

Plant community composition in the hay residue

treatment also differed from the control plots and was

characterized by a larger proportion of bare ground and

early-successional agricultural weeds (Fig. 1). This result

may have been caused by the low bulk density of the hay

residue compared to the biochar. As a consequence, a

larger volume was incorporated in the top 10 cm in the

Hay residue treatment, resulting in an uplifting of the

soil surface. In combination with a drought during the

spring in 2011, this could have resulted in reduced water

availability and increased mortality of young seedlings.

The resulting open spaces may have been colonized by

propagules of agricultural weeds.

Biochar enhances legume performance

In response to soil amendment with biochar, legume

abundance and the biomass of individual T. pratense

plants increased, whereas the biomass of the most

abundant forb, P. lanceolata, was not altered. This

positive effect of biochar on legumes has been

reported before, for example, in a short-term study

with common beans (Phaseolus vulgaris L.) by

Rondon et al. (2007). They related this effect to an

increase in biologically fixed nitrogen, which was also

reported to increase in soybean in the presence of

biochar by Tagoe et al. (2008) and Ogawa and

Okimori (2010). Rondon et al. suggested that the

increased rate of biological N fixation may be due to

increased soil pH or increased availability of some

limiting macro- and micronutrients. However, in a

long-term field study (three years), total nitrogenase

activity of a whole clover root system remained

unaffected by biochar amendment (Quilliam et al.

2012). Also in our study, investigations of the

percentage of N derived from the atmosphere in the

legumes did not yield any evidence for enhanced rates

of BNF in soils with biochar. Even though the rate of

BNF did not change, on a per plant basis T. pratense

plants from biochar-amended plots contained in total

four times more N that originated from the atmo-

sphere than T. pratense plants from the control plots.

This was mainly due to the higher biomass accumu-

lation of T. pratense plants in biochar-amended plots.

This suggests that the ability of legumes to use

atmospheric nitrogen also made it possible to utilize

the higher availability of K and P in biochar plots as

compared to the nonlegumes (Mengel and Kirkby

1987). It is known that legumes in particular can

benefit from increased soil K availability (Sangakkara

et al. 1996). Indeed, K concentration in plant tissue

was highest in the biochar treatments. In our study,

we found no indications that the increased availability

of other (micro-) nutrients stimulated legumes.

Biochar control treatments

The results of our study highlight the importance of

including correct control treatments in biochar research,

a point that has gained recent interest (Jeffery et al.

2014). The majority of studies on biochar amendment

compare a biochar addition treatment with a control

treatment without any soil amendment. However, for

many of the observations in this study, for example soil

PO4, K, and pH, we found significant differences

between the Control (no amendment) and biochar

treatments, but no difference between biochar and the

Hay residue treatments. Conversely, plant N concentra-

tion, for example, was only affected by hay residue

incorporation and not by biochar amendment. These

observations show that in some cases the addition of any

organic substrate can be more important than the fact

that it is specifically biochar.

FIG. 4. (a) Percentage nitrogen (N) derived from atmo-
sphere (Ndfa) and (b) total N derived from atmosphere in
Trifolium pratense plants per field treatment; values are mean 6
SE; n ¼ 6). Different lowercase letters indicate significant
differences (P , 0.05), based on a Tukey’s HSD post hoc test.
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Long-term cascading effects of biochar

Within the first growing season we observed strong

and significant effects of biochar addition on soil
nutrients and plant community composition. Over time
these observations are expected to further cascade to

other (soil) organisms and ecosystem processes. How-
ever, it remains to be seen whether and how these

changes will affect ecosystem functioning over time.
Future effects could occur via a multitude of mecha-

nisms, such as via alterations in chemical or physical soil
conditions. In our example, the increased soil K content

or increased pH will give a competitive advantage to
species that perform better with a higher K content or

pH. Indirectly, the altered soil pH or nutrient levels can
also change the composition of the microbial commu-

nity (Jones et al. 2012, Quilliam et al. 2013), including
arbuscular mycorrhizal fungi (Dumbrell et al. 2010),

which can then affect plant performance. On the other
hand, the observed alterations in plant community

composition will also affect soil community composi-
tion, as each plant species creates its own soil biotic

community (Bezemer et al. 2010). Via biotic plant–soil
interactions, these species-specific soil communities can
differentially affect the growth of subsequent plant

species growing in that soil, which could then alter the
succession of the community as a whole (van de Voorde

et al. 2011, Hendriks et al. 2013). Even when the direct
effects of biochar addition disappear rapidly in the

following growing seasons, for example, due to leaching
or utilization of mobile ions such as K, the effect of

biochar addition will remain visible in the plant
community and in the ecosystem via altered mechanisms

like seed production, competition, and plant–soil
interactions over a much longer period. Of course, when

the direct effects of biochar amendment are present for a
longer period, for example, due to the use of pelletized

biochar, these direct and indirect effects will occur
simultaneously.

Concluding remarks

This study in a Dutch nature restoration area
demonstrates that biochar amendment can have strong

and rapid effects on plant community composition and
soil nutrient status. Over time, these effects could
cascade up to other trophic layers such as above- and

belowground organisms, which may have long-term
consequences for the functioning and composition of the

ecosystem. These results emphasize the need for long-
term field studies, with well-designed controls, that study

not only the short-term effects of biochar amendment,
but also follow how these effects cascade up to other

groups over time, affecting the ecosystem as a whole.
Potentially, applying biochar to wastelands and (semi-)

natural systems could be a way of sequestering carbon
(Woolf et al. 2010), which could then potentially become

a way to finance the maintenance and production costs
of these restoration areas. However, more long-term

experiments are needed first.
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SUPPLEMENTAL MATERIAL

Appendix

Mean cover per plant species in field experiment, biochar effect on germination, and mean plant N:P, N:K, and P:K ratios
(Ecological Archives A024-067-A1).
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