28 research outputs found

    Immunochemotherapy With Obinutuzumab or Rituximab for Previously Untreated Follicular Lymphoma in the GALLIUM Study: Influence of Chemotherapy on Efficacy and Safety

    Get PDF
    PurposeThe GALLIUM study (ClinicalTrials.gov identifier: NCT01332968) showed that obinutuzumab (GA101;G) significantly prolonged progression-free survival (PFS) in previously untreated patients with follicular lymphoma relative to rituximab (R) when combined with cyclophosphamide (C), doxorubicin, vincristine (V), and prednisone (P;CHOP);CVP;or bendamustine. This report focuses on the impact of chemotherapy backbone on efficacy and safety.Patients and Methods: A total of 1,202 patients with previously untreated follicular lymphoma (grades 1 to 3a), advanced disease (stage III or IV, or stage II with tumor diameter 7 cm), Eastern Cooperative Oncology Group performance status 0 to 2, and requiring treatment were randomly assigned 1:1 to G 1,000 mg on days 1, 8, and 15 of cycle 1 and day 1 of subsequent cycles or R 375 mg/m(2) on day 1 of each cycle, for six to eight cycles, depending on chemotherapy (allocated nonrandomly by center). Responding patients received G or R for 2 years or until disease progression.Results: Baseline Follicular Lymphoma International Prognostic Index risk, bulky disease, and comorbidities differed by chemotherapy. After 41.1 months median follow-up, PFS (primary end point) was superior for G plus chemotherapy (overall hazard ratio [HR], 0.68;95% CI, 0.54 to 0.87;P = .0016), with consistent results across chemotherapy backbones (bendamustine: HR, 0.63;95% CI, 0.46 to 0.88;CHOP: HR, 0.72;95% CI, 0.48 to 1.10;CVP: HR, 0.79;95% CI, 0.42 to 1.47). Grade 3 to 5 adverse events, notably cytopenias, were most frequent with CHOP. Grade 3 to 5 infections and second neoplasms were most frequent with bendamustine, which was associated with marked and prolonged reductions in T-cell counts. Fatal events were more frequent in patients treated with bendamustine, possibly reflecting differences in patient risk profiles.Conclusion: Improved PFS was observed for G plus chemotherapy for all three chemotherapy backbones. Safety profiles differed, although comparisons are confounded by nonrandom chemotherapy allocation

    Rapamycin induces glucose intolerance in mice by reducing islet mass, insulin content, and insulin sensitivity

    Get PDF
    Rapamycin, a specific inhibitor for mTOR complex 1, is an FDA-approved immunosuppressant for organ transplant. Recent developments have raised the prospect of using rapamycin to treat cancer or diabetes and to delay aging. It is therefore important to assess how rapamycin treatment affects glucose homeostasis. Here, we show that the same rapamycin treatment reported to extend mouse life span significantly impaired glucose homeostasis of aged mice. Moreover, rapamycin treatment of lean C57B/L6 mice reduced glucose-stimulated insulin secretion in vivo and ex vivo as well as the insulin content and beta cell mass of pancreatic islets. Confounding the diminished capacity for insulin release, rapamycin decreased insulin sensitivity. The multitude of rapamycin effects thus all lead to glucose intolerance. As our findings reveal that chronic rapamycin treatment could be diabetogenic, monitoring glucose homeostasis is crucial when using rapamycin as a therapeutic as well as experimental reagent

    Mre11 modulates the fidelity of fusion between short telomeres in human cells

    Get PDF
    The loss of telomere function can result in the fusion of telomeres with other telomeric loci, or non-telomeric double-stranded DNA breaks. Sequence analysis of fusion events between short dysfunctional telomeres in human cells has revealed that fusion is characterized by a distinct molecular signature consisting of extensive deletions and micro-homology at the fusion points. This signature is consistent with alternative error-prone end-joining processes. We have examined the role that Mre11 may play in the fusion of short telomeres in human cells; to do this, we have analysed telomere fusion events in cells derived from ataxia-telangiectasia-like disorder (ATLD) patients that exhibit hypomorphic mutations in MRE11. The telomere dynamics of ATLD fibroblasts were indistinguishable from wild-type fibroblasts and they were proficient in the fusion of short telomeres. However, we observed a high frequency of insertion of DNA sequences at the fusion points that created localized sequence duplications. These data indicate that Mre11 plays a role in the fusion of short dysfunctional telomeres in human cells and are consistent with the hypothesis that as part of the MRN complex it serves to stabilize the joining complex, thereby controlling the fidelity of the fusion reaction

    Fusion of short telomeres in human cells is characterized by extensive deletion and microhomology, and can result in complex rearrangements

    Get PDF
    Telomere fusion is an important mutational event that has the potential to lead to large-scale genomic rearrangements of the types frequently observed in cancer. We have developed single-molecule approaches to detect, isolate and characterize the DNA sequence of telomere fusion events in human cells. Using these assays, we have detected complex fusion events that include fusion with interstitial loci adjacent to fragile sites, intra-molecular rearrangements, and fusion events involving the telomeres of both arms of the same chromosome consistent with ring chromosome formation. All fusion events were characterized by the deletion of at least one of the telomeres extending into the sub-telomeric DNA up to 5.6 kb; close to the limit of our assays. The deletion profile indicates that deletion may extend further into the chromosome. Short patches of DNA sequence homology with a G:C bias were observed at the fusion point in 60% of events. The distinct profile that accompanies telomere fusion may be a characteristic of the end-joining processes involved in the fusion event

    Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia

    Get PDF
    Barrett’s oesophagus is a premalignant metaplastic condition that predisposes patients to the development of oesophageal adenocarcinoma. However, only a minor fraction of Barrett’s oesophagus patients progress to adenocarcinoma and it is thus essential to determine bio-molecular markers that can predict the progression of this condition. Telomere dysfunction is considered to drive clonal evolution in several tumour types and telomere length analysis provides clinically relevant prognostic and predictive information. The aim of this work was to use high-resolution telomere analysis to examine telomere dynamics in Barrett’s oesophagus. Telomere length analysis of XpYp, 17p, 11q and 9p, chromosome arms that contain key cancer related genes that are known to be subjected to copy number changes in Barrett’s metaplasia, revealed similar profiles at each chromosome end, indicating that no one specific telomere is likely to suffer preferential telomere erosion. Analysis of patient matched tissues (233 samples from 32 patients) sampled from normal squamous oesophagus, Z-line, and 2 cm intervals within Barrett’s metaplasia, plus oesophago-gastric junction, gastric body and antrum, revealed extensive telomere erosion in Barrett’s metaplasia to within the length ranges at which telomere fusion is detected in other tumour types. Telomere erosion was not uniform, with distinct zones displaying more extensive erosion and more homogenous telomere length profiles. These data are consistent with an extensive proliferative history of cells within Barrett’s metaplasia and are indicative of localised clonal growth. The extent of telomere erosion highlights the potential of telomere dysfunction to drive genome instability and clonal evolution in Barrett’s metaplasia

    The state of play in European coaching & mentoring

    Get PDF
    This report provides an overview of the main findings from the 2017 European Coaching and Mentoring Research Project, undertaken by Jonathan Passmore and Hazel Brown, in partnership with the EMCC and the wider European coaching and mentoring industry. The study was planned in 2016 and undertaken during a 12-week period, between March and May 2017. This is one of a number reports published. This Executive Report is available free of charge, along with a National Report in countries that achieved over 50 coach or mentor participants. Each National Report is published in the language chosen by of the respective national coaching community. The aim of these national reports is to deepen understanding of coaching and mentoring and to widen engagement with coaching and mentoring.peer-reviewe

    Short telomeres are preferentially elongated by telomerase in human cells

    Get PDF
    Short telomeres have been shown to be preferentially elongated in both yeast and mouse models. We examined this in human cells, by utilising cells with large allelic telomere length differentials and observing the relative rates of elongation following the expression of hTERT. We observed that short telomeres are gradually elongated in the first 26 PDs of growth, whereas the longer telomeres displayed limited elongation in this period. Telomeres coalesced at similar lengths irrespective of their length prior to the expression of hTERT. These data indicate that short telomeres are marked for gradual elongation to a cell strain specific length threshold
    corecore