60 research outputs found

    Activation of Innate Immune-Response Genes in Little Brown Bats (Myotis lucifugus) Infected with the Fungus Pseudogymnoascus destructans

    Get PDF
    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes.Funding for this study was provided by a Fish and Wildlife Service grant to CRKW, TB and VM and by a Natural Sciences and Engineering Research Council (Discovery) grant to VM and a fellowship within the Postdoc Programme of the DAAD, German Academic Exchange Service (to LW). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.011228

    Chytridiomycosis and Amphibian Population Declines Continue to Spread Eastward in Panama

    Get PDF
    Chytridiomycosis is a globally emerging disease of amphibians and the leading cause of population declines and extirpations at species-diverse montane sites in Central America. We continued long-term monitoring efforts for the presence of the fungal pathogen Batrachochytrium dendrobatidis (Bd) and for amphibian populations at two sites in western Panama, and we began monitoring at three new sites to the east. Population declines associated with chytridiomycosis emergence were detected at Altos de Campana National Park. We also detected Bd in three species east of the Panama Canal at Soberanía National Park, and prevalence data suggests that Bd may be enzootic in the lowlands of the park. However, no infected frogs were found further east at Tortí (prevalence <7.5% with 95% confidence). Our results suggest that Panama's diverse and not fully described amphibian communities east of the canal are at risk. Precise predictions of future disease emergence events are not possible until factors underlying disease emergence, such as dispersal, are understood. However, if the fungal pathogen spreads in a pattern consistent with previous disease events in Panama, then detection of Bd at Tortí and other areas east of the Panama Canal is imminent. Therefore, development of new management strategies and increased precautions for tourism, recreation, and biology are urgently neede

    The Deadly Chytrid Fungus: A Story of an Emerging Pathogen

    Get PDF
    [Extract] Emerging infectious diseases present a great challenge for the health of both humans and wildlife. The increasing prevalence of drug-resistant fungal pathogens in humans [1] and recent outbreaks of novel fungal pathogens in wildlife populations [2] underscore the need to better understand the origins and mechanisms of fungal pathogenicity. One of the most dramatic examples of fungal impacts on vertebrate populations is the effect of the amphibian disease chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd).\ud Amphibians around the world are experiencing unprecedented population losses and local extinctions [3]. While there are multiple causes of amphibian declines, many catastrophic die-offs are attributed to Bd [4],[5]. The chytrid pathogen has been documented in hundreds of amphibian species, and reports of Bd's impact on additional species and in additional geographic regions are accumulating at an alarming rate (e.g., see http://www.spatialepidemiology.net/bd). Bd is a microbial, aquatic fungus with distinct life stages. The motile stage, called a zoospore, swims using a flagellum and initiates the colonization of frog skin. Within the host epidermal cells, a zoospore forms a spherical thallus, which matures and produces new zoospores by dividing asexually, renewing the cycle of infection when zoospores are released to the skin surface (Figure 1). Bd is considered an emerging pathogen, discovered and described only a decade ago [6],[7]. Despite intensive ecological study of Bd over the last decade, a number of unanswered questions remain. Here we summarize what has been recently learned about this lethal pathogen

    Thermal Performance Curves of Multiple Isolates of Batrachochytrium dendrobatidis, a Lethal Pathogen of Amphibians

    Get PDF
    Emerging infectious disease is a key factor in the loss of amphibian diversity. In particular, the disease chytridiomycosis has caused severe declines around the world. The lethal fungal pathogen that causes chytridiomycosis, Batrachochytrium dendrobatidis (Bd), has affected amphibians in many different environments. One primary question for researchers grappling with disease-induced losses of amphibian biodiversity is what abiotic factors drive Bd pathogenicity in different environments. To study environmental influences on Bd pathogenicity, we quantified responses of Bd phenotypic traits (e.g., viability, zoospore densities, growth rates, and carrying capacities) over a range of environmental temperatures to generate thermal performance curves. We selected multiple Bd isolates that belong to a single genetic lineage but that were collected across a latitudinal gradient. For the population viability, we found that the isolates had similar thermal optima at 21°C, but there was considerable variation among the isolates in maximum viability at that temperature. Additionally, we found the densities of infectious zoospores varied among isolates across all temperatures. Our results suggest that temperatures across geographic point of origin (latitude) may explain some of the variation in Bd viability through vertical shifts in maximal performance. However, the same pattern was not evident for other reproductive parameters (zoospore densities, growth rates, fecundity), underscoring the importance of measuring multiple traits to understand variation in pathogen responses to environmental conditions. We suggest that variation among Bd genetic variants due to environmental factors may be an important determinant of disease dynamics for amphibians across a range of diverse environments

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species

    Context-dependent conservation responses to emerging wildlife diseases

    Get PDF
    Emerging infectious diseases pose an important threat to wildlife. While established protocols exist for combating outbreaks of human and agricultural pathogens, appropriate management actions before, during, and after the invasion of wildlife pathogens have not been developed. We describe stage-specific goals and management actions that minimize disease impacts on wildlife, and the research required to implement them. Before pathogen arrival, reducing the probability of introduction through quarantine and trade restrictions is key because prevention is more cost effective than subsequent responses. On the invasion front, the main goals are limiting pathogen spread and preventing establishment. In locations experiencing an epidemic, management should focus on reducing transmission and disease, and promoting the development of resistance or tolerance. Finally, if pathogen and host populations reach a stable stage, then recovery of host populations in the face of new threats is paramount. Successful management of wildlife disease requires risk-taking, rapid implementation, and an adaptive approach."Funding was provided by the US National Science Foundation (grants EF-0914866, DGE-0741448, DEB-1115069, DEB-1336290) and the National Institutes of Health (grant 1R010AI090159)."https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/14024

    Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Biodiversity loss is one major outcome of human-mediated ecosystem disturbance. One way that humans have triggered wildlife declines is by transporting disease-causing agents to remote areas of the world. Amphibians have been hit particularly hard by disease due in part to a globally distributed pathogenic chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Prior research has revealed important insights into the biology and distribution of Bd; however, there are still many outstanding questions in this system. Although we know that there are multiple divergent lineages of Bd that differ in pathogenicity, we know little about how these lineages are distributed around the world and where lineages may be coming into contact. Here, we implement a custom genotyping method for a global set of Bd samples. This method is optimized to amplify and sequence degraded DNA from noninvasive skin swab samples. We describe a divergent lineage of Bd, which we call BdASIA3, that appears to be widespread in Southeast Asia. This lineage co-occurs with the global panzootic lineage (BdGPL) in multiple localities. Additionally, we shed light on the global distribution of BdGPL and highlight the expanded range of another lineage, BdCAPE. Finally, we argue that more monitoring needs to take place where Bd lineages are coming into contact and where we know little about Bd lineage diversity. Monitoring need not use expensive or difficult field techniques but can use archived swab samples to further explore the history—and predict the future impacts—of this devastating pathogen

    Use of micro CHP plants to support the local operation of electric heat pumps

    Get PDF
    Fig. 1. Global distribution of chytridiomycosis-associated amphibian species declines. Bar plots indicate the number (N) of declined species, grouped by continental area and classified by decline severity. Brazilian species are plotted separately from all other South American species (South America W); Mesoamerica includes Central America, Mexico, and the Caribbean Islands; and Oceania includes Australia and New Zealand. No declines have been reported in Asia. n, total number of declines by region. [Photo credits (clockwise from top left): Anaxyrus boreas, C. Brown, U.S. Geological Survey; Atelopus varius, B.G.; Salamandra salamandra, D. Descouens, Wikimedia Commons; Telmatobius sanborni, I.D.l.R; Cycloramphus boraceiensis, L.F.T.; Cardioglossa melanogaster, M.H.; and Pseudophryne corroboree, C. Doughty

    Phenotypic profiling of Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians

    No full text
    The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is responsible for many amphibian declines worldwide. The determinants of Bd’s high virulence across a wide range of amphibian species are not well understood but include environmental factors, host responses to infection, and pathogenicity of Bd. Because there are clear differences among Bd isolates, genetic profiling of multiple strains is currently in progress. However, genetic analyses alone may not provide a functional explanation for differential virulence among strains. I aimed to quantify phenotypic traits, such as zoospores densities, that are important for disease development. Among the three isolates tested, zoospore densities were highest in GibboRiver-L.lesueuri-00-LB-P24, an isolate originally collected from a Litoria lesueuri tadpole and highly virulent in infection experiments. Because characterizing differences among isolates is central to understanding Bd pathogenicity, integrating genetic work with the phenotypic profiling methods provided in this study will offer insights into chytridiomycosis and may be important for amphibian conservation.\ud \u
    corecore