14 research outputs found

    Regional employment and individual worklessness during the Great Recession and the health of the working-age population: cross-national analysis of 16 European countries

    Get PDF
    Studies from single countries suggest that local labour market conditions, including rates of employment, tend to be associated with the health of the populations residing in those areas, even after adjustment for individual characteristics including employment status. The aim of this study is to strengthen the cross-national evidence base on the influence of regional employment levels and individual worklessness on health during the period of the Great Recession. We investigate whether higher regional employment levels are associated with better health over and above individual level employment. Individual level data (N = 23,078 aged 15–64 years) were taken from 16 countries (Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland, Netherlands, Norway, Poland, Portugal, Spain, Sweden and United Kingdom) participating in the 2014 European Social Survey. Regional employment rates were extracted from Eurostat, corresponding with the start (2008) and end (2013) of the Great Recession. Health outcomes included self-reported heart or circulation problems, high blood pressure, diabetes, self-rated health, depression, obesity and allergies (as a falsification test). We calculated multilevel Poisson regression models, which included individuals nested within regions, controlling for potential confounding variables and country fixed effects. After adjustment for individual level socio-demographic factors, higher average regional employment rates (from 2008 to 2013) were associated with better health outcomes. Individual level worklessness was associated with worsened health outcomes, most strongly with poor self-rated health. In models including both individual worklessness and the average regional employment rate, regional employment remained associated with heart and circulation problems, depression and obesity. There was evidence of an interaction between individual worklessness and regional employment for poor self-rated health and depression. The findings suggest that across 16 European countries, for some key outcomes, higher levels of employment in the regional labour market may be beneficial for the health of the local population

    Structural Basis for Apoptosis Inhibition by Epstein-Barr Virus BHRF1

    Get PDF
    Epstein-Barr virus (EBV) is associated with human malignancies, especially those affecting the B cell compartment such as Burkitt lymphoma. The virally encoded homolog of the mammalian pro-survival protein Bcl-2, BHRF1 contributes to viral infectivity and lymphomagenesis. In addition to the pro-apoptotic BH3-only protein Bim, its key target in lymphoid cells, BHRF1 also binds a selective sub-set of pro-apoptotic proteins (Bid, Puma, Bak) expressed by host cells. A consequence of BHRF1 expression is marked resistance to a range of cytotoxic agents and in particular, we show that its expression renders a mouse model of Burkitt lymphoma untreatable. As current small organic antagonists of Bcl-2 do not target BHRF1, the structures of it in complex with Bim or Bak shown here will be useful to guide efforts to target BHRF1 in EBV-associated malignancies, which are usually associated with poor clinical outcomes

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation

    Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance

    Get PDF
    Of the 10 million people estimated to have fallen ill with tuberculosis (TB) in 2019, nearly half million developed TB resistant to rifampicin (RIF), and over one million developed TB susceptible to RIF but resistant to isoniazid (INH). Drug resistance must be detected rapidly and accurately to initiate appropriate and effective treatment. The detection of RIF resistance has improved significantly in the past decade with the introduction of rapid diagnostic tools based on DNA detection. The introduction of these tests has dramatically increased the number of TB patients tested for RIF resistance, leading to a 129% increase of individuals started on second-line TB treatment between 2012 and 2019. The majority of patients with RIF-resistant TB can be detected by analysing the 81-base pair fragment of the rpoB gene region. However, the situation is not that clear for other anti-TB drugs due to the lack of knowledge of how phenotypic resistance is associated with mutations in the Mycobacterium tuberculosis (Mtb) genome. In response to this issue the WHO has developed a catalogue of Mtb mutations in the and their association with phenotypic drug resistance. The catalogue provides a reference standard for the interpretation of mutations conferring resistance to all first-line and a variety of second-line drugs. The report summarises the analysis of over 38,000 isolates with matched data on whole genome sequencing and phenotypic drug susceptibility testing from over 40 countries for 13 anti-TB medicines. It lists over 17,000 mutations, their frequency and association with or not with resistance and includes methods used, mutations identified and summaries of important findings for each drug. Tuberculosis laboratories around the world can use the catalogue as a support in the interpretation of genome sequencing results. The catalogue can also guide the development of new molecular drug susceptibility tests, including next-generation sequencing.</p

    Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1).

    Get PDF
    AbstractWe have utilized glycan microarray technology to determine the receptor binding properties of early isolates from the recent 2009 H1N1 human pandemic (pdmH1N1), and compared them to North American swine influenza isolates from the same year, as well as past seasonal H1N1 human isolates. We showed that the pdmH1N1 strains, as well as the swine influenza isolates examined, bound almost exclusively to glycans with α2,6-linked sialic acid with little binding detected for α2,3-linked species. This is highlighted by pair-wise comparisons between compounds with identical glycan backbones, differing only in the chemistry of their terminal linkages. The overall similarities in receptor binding profiles displayed by pdmH1N1 strains and swine isolates indicate that little or no adaptation appeared to be necessary in the binding component of HA for transmission from pig to human, and subsequent human to human spread
    corecore