1,012 research outputs found

    Real Estate versus Financial Asset Returns and Inflation: Can a P* Trading Strategy Improve REIT Investment Performance?

    Get PDF
    The ability of a financial or real asset to provide a rate of return above the rate of inflation is crucial to investors. The financial literature on the inflation-hedging effectiveness of various investments suggests that real estate acts as a hedge against inflation on a period-by-period basis, while financial assets do not. Given this, an investor who could accurately forecast changes in inflation, and therefore alter his/her investment portfolio between real estate and financial assets, should be able to significantly improve portfolio returns. Recently, a new method of measuring potential inflation has been developed by the Federal Reserve Board. Dubbed P*, it relates long-run spending in the economy to long- run output and gives an implied value for future inflation. In this study, the accuracy of P* in forecasting prices is compared to conventional forecasts of inflation. The P* variable is then used to generate a decision rule for investors in terms of holding financial assets (which performs well in periods of low or falling inflation) and real estate (which has been identified as an asset that behaves as an effective hedge against inflation). The results for this strategy are then contrasted with the performance of selected assets under a simple buy-and -hold strategy.

    Investigation into Nanocomposites for Applications in Lightning Strike Protection

    Get PDF
    The United States Air Force is continually researching ways to reduce costs associated with aircraft maintenance and improve operational safety. This study focuses on creating a systems engineering process to develop an Integrated Structural Health Monitoring System (ISHMS). The overarching process was then applied to design a conceptual ISHMS for a real-world scenario involving the F-15. Sensor selection, integration and testing were explored in detail using frequency response methods to detect structural damage. Testing was accomplished using a simplified structural specimen with Monitoring & Evaluation Technology Integration System (METIS) disk nodes attached at various locations. Two different METIS disk operation modes were utilized; pulse-echo and pitch-catch. Simulated and actual damage were introduced to the specimen allowing comparison between baseline and damaged tests. Comparative analysis validated the capabilities of frequency response sensors to detect damage. This analysis demonstrates that structural health monitoring systems using frequency response methods may be promising in the aerospace sector

    The Inflation-Hedging Effectiveness of Real Estate

    Get PDF
    Inflation has become one of the predominant financial concerns of the late twentieth century. In the late 1970s, public opinion polls ranked inflation as the number one problem in the United States. While the rate of inflation has slowed since the late 1970s, inflation is still present and many investors expect a resurgence of inflation to higher levels in the near to immediate future. This continued concern about inflation has led to an increased search and evaluation of investments that will protect investors from inflation. Assets that have the ability to protect investors from the effects of inflation are generally labeled inflation hedges. Real estate has been regarded as one of the best inflation hedges of past years. While there has been research in the past evaluating this possibility and some recent research using only business real estate, no current research on residential real estate or farmland as inflation hedges exists. This study examines the inflation-hedging effectiveness of residential real estate, farmland, and business real estate (with a different data set) as individual assets and in a portfolio context for 1960-86.

    Approaches for advancing scientific understanding of macrosystems

    Get PDF
    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them

    Hubble Space Telescope Imaging of Lyman Alpha Emission at z=4.4

    Get PDF
    We present the highest redshift detections of resolved Lyman alpha emission, using Hubble Space Telescope/ACS F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS CDF-S. We detect Lyman alpha emission from three spectroscopically confirmed z = 4.4 Lyman alpha emitting galaxies (LAEs), more than doubling the sample of LAEs with resolved Lyman alpha emission. Comparing the light distribution between the rest-frame ultraviolet continuum and narrowband images, we investigate the escape of Lyman alpha photons at high redshift. While our data do not support a positional offset between the Lyman alpha and rest-frame ultraviolet (UV) continuum emission, the half-light radii in two out of the three galaxies are significantly larger in Lyman alpha than in the rest-frame UV continuum. This result is confirmed when comparing object sizes in a stack of all objects in both bands. Additionally, the narrowband flux detected with HST is significantly less than observed in similar filters from the ground. These results together imply that the Lyman alpha emission is not strictly confined to its indigenous star-forming regions. Rather, the Lyman alpha emission is more extended, with the missing HST flux likely existing in a diffuse outer halo. This suggests that the radiative transfer of Lyman alpha photons in high-redshift LAEs is complicated, with the interstellar-medium geometry and/or outflows playing a significant role in galaxies at these redshifts.Comment: Submitted to the Astrophysical Journal. 11 pages, 10 figure

    White Dwarfs in Globular Clusters: HST Observations of M4

    Get PDF
    Using WFPC2 on the Hubble Space Telescope, we have isolated a sample of 258 white dwarfs (WDs) in the Galactic globular cluster M4. Fields at three radial distances from the cluster center were observed and sizeable WD populations were found in all three. The location of these WDs in the color-magnitude diagram, their mean mass of 0.51(±0.03 \pm 0.03)M_{\odot}, and their luminosity function confirm basic tenets of stellar evolution theory and support the results from current WD cooling theory. The WDs are used to extend the cluster main-sequence mass function upward to stars that have already completed their nuclear evolution. The WD/red dwarf binary frequency in M4 is investigated and found to be at most a few percent of all the main-sequence stars. The most ancient WDs found are about 9 Gyr old, a level which is set solely by the photometric limits of our data. Even though this is less than the age of M4, we discuss how these cooling WDs can eventually be used to check the turnoff ages of globular clusters and hence constrain the age of the Universe.Comment: 46 pages, latex, no figures included, figures available at ftp://ftp.astro.ubc.ca/pub/richer/wdfig.uu size 2.7Mb. To be published in the Astrophysical Journa

    Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Get PDF
    Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr) and basic (Arg) residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD) of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift) and orientation (tilt, rotation) of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å) shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100) ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors

    Detectability of Orbital Motion in Stellar Binary and Planetary Microlenses

    Get PDF
    A standard binary microlensing event lightcurve allows just two parameters of the lensing system to be measured: the mass ratio of the companion to its host, and the projected separation of the components in units of the Einstein radius. However, other exotic effects can provide more information about the lensing system. Orbital motion in the lens is one such effect, which if detected, can be used to constrain the physical properties of the lens. To determine the fraction of binary lens lightcurves affected by orbital motion (the detection efficiency) we simulate lightcurves of orbiting binary star and star-planet (planetary) lenses and simulate the continuous, high-cadence photometric monitoring that will be conducted by the next generation of microlensing surveys that are beginning to enter operation. The effect of orbital motion is measured by fitting simulated lightcurve data with standard static binary microlensing models; lightcurves that are poorly fit by these models are considered to be detections of orbital motion. We correct for systematic false positive detections by also fitting the lightcurves of static binary lenses. For a continuous monitoring survey without intensive follow-up of high magnification events, we find the orbital motion detection efficiency for planetary events with caustic crossings to be 0.061+-0.010, consistent with observational results, and 0.0130+-0.0055 for events without caustic crossings (smooth events). Similarly for stellar binaries, the orbital motion detection efficiency is 0.098+-0.011 for events with caustic crossings and is 0.048+-0.006 for smooth events. These result in combined (caustic crossing and smooth) orbital motion detection efficiencies of 0.029+-0.005 for planetary lenses and 0.070+-0.006 for stellar binary lenses. We also investigate how various microlensing parameters affect the orbital motion detectability. [Abridged]Comment: 21 pages, 22 figures, 5 table
    corecore