213 research outputs found
A Quantum Langevin Formulation of Risk-Sensitive Optimal Control
In this paper we formulate a risk-sensitive optimal control problem for
continuously monitored open quantum systems modelled by quantum Langevin
equations. The optimal controller is expressed in terms of a modified
conditional state, which we call a risk-sensitive state, that represents
measurement knowledge tempered by the control purpose. One of the two
components of the optimal controller is dynamic, a filter that computes the
risk-sensitive state.
The second component is an optimal control feedback function that is found by
solving the dynamic programming equation. The optimal controller can be
implemented using classical electronics.
The ideas are illustrated using an example of feedback control of a two-level
atom
Heisenberg Picture Approach to the Stability of Quantum Markov Systems
Quantum Markovian systems, modeled as unitary dilations in the quantum
stochastic calculus of Hudson and Parthasarathy, have become standard in
current quantum technological applications. This paper investigates the
stability theory of such systems. Lyapunov-type conditions in the Heisenberg
picture are derived in order to stabilize the evolution of system operators as
well as the underlying dynamics of the quantum states. In particular, using the
quantum Markov semigroup associated with this quantum stochastic differential
equation, we derive sufficient conditions for the existence and stability of a
unique and faithful invariant quantum state. Furthermore, this paper proves the
quantum invariance principle, which extends the LaSalle invariance principle to
quantum systems in the Heisenberg picture. These results are formulated in
terms of algebraic constraints suitable for engineering quantum systems that
are used in coherent feedback networks
A phase II study of the bispecific antibody MDX-H210 (anti-HER2 × CD64) with GM-CSF in HER2+ advanced prostate cancer
The proto-oncogene HER2 presents a novel therapeutic target. We report results in 25 patients with HER2+ advanced prostate cancer treated with the bispecific antibody MDX-H210 15 μg m−2by intravenous infusion plus GM-CSF 5 μg kg−1day−1by subcutaneous injection for 4 days repeated weekly for 6 weeks. Patients with stable disease or better received further cycles of treatment until disease progression or study withdrawal. 1 patient received no treatment and 4 received less than 1 cycle and are included in the toxicity analysis only. Median duration of follow up was 105+ (range 21–188) days. Toxicity was generally NCI-CTG 0–2. There were 2 grade 4 adverse events (heart failure and dyspnoea) and 1 grade 3 event (allergic reaction) resulting in discontinuation of the study medication. There were 9 further grade 3 events not resulting in trial withdrawal. There were no treatment-related deaths. 7/20 (35%) evaluable patients had a >50% PSA response of median duration 128 (range 71–184+) days. 7/12 (58%) patients with evaluable pain had improvements in pain scores. The PSA relative velocity on therapy decreased in 15/18 (83%) assessable patients compared to pre-study. GM-CSF and MDX-H210 is active in hormone refractory prostate carcinoma with acceptable toxicity; further studies are warranted. © 2001 Cancer Research Campaign http://www.bjcancer.co
Enhanced control of the ionization rate in radio-frequency plasmas with structured electrodes via tailored voltage waveforms
International audienceRadio-frequency capacitively coupled plasmas that incorporate structured electrodes enable increases in the electron density within spatially localized regions through the hollow cathode effect (HCE). This enables enhanced control over the spatial profile of the plasma density, which is useful for several applications including materials processing, lighting and spacecraft propulsion. However, asymmetries in the powered and grounded electrode areas inherent to the hollow cathode geometry lead to the formation of a time averaged dc self-bias voltage at the powered electrode. This bias alters the energy and flux of secondary electrons leaving the surface of the cathode and consequentially can moderate the increased localized ionization afforded by the hollow cathode discharge. In this work, two-dimensional fluid-kinetic simulations are used to demonstrate control of the dc self-bias voltage in a dual-frequency driven (13.56, 27.12 MHz), hollow cathode enhanced, capacitively coupled argon plasma over the 66.6--200 Pa (0.5--1.5 Torr) pressure range. By varying the phase offset of the 27.12 MHz voltage waveform, the dc self-bias voltage varies by 10%--15% over an applied peak-to-peak voltage range of 600--1000 V, with lower voltages showing higher modulation. Resulting ionization rates due to secondary electrons within the hollow cathode cavity vary by a factor of 3 at constant voltage amplitude, demonstrating the ability to control plasma properties relevant for maintaining and enhancing the HCE
Total energy expenditure is repeatable in adults but not associated with short-term changes in body composition
Low total energy expenditure (TEE, MJ/d) has been a hypothesized risk factor for weight gain, but repeatability of TEE, a critical variable in longitudinal studies of energy balance, is understudied. We examine repeated doubly labeled water (DLW) measurements of TEE in 348 adults and 47 children from the IAEA DLW Database (mean ± SD time interval: 1.9 ± 2.9 y) to assess repeatability of TEE, and to examine if TEE adjusted for age, sex, fat-free mass, and fat mass is associated with changes in weight or body composition. Here, we report that repeatability of TEE is high for adults, but not children. Bivariate Bayesian mixed models show no among or within-individual correlation between body composition (fat mass or percentage) and unadjusted TEE in adults. For adults aged 20-60 y (N = 267; time interval: 7.4 ± 12.2 weeks), increases in adjusted TEE are associated with weight gain but not with changes in body composition; results are similar for subjects with intervals >4 weeks (N = 53; 29.1 ± 12.8 weeks). This suggests low TEE is not a risk factor for, and high TEE is not protective against, weight or body fat gain over the time intervals tested
Recommended from our members
Lets Talk about Race: Identity, Chatbots, and AI
Why is it so hard for chatbots to talk about race? This work explores how the biased contents of databases, the syntactic focus of natural language processing, and the opaque nature of deep learning algorithms cause chatbots difficulty in handling race-talk. In each of these areas, the tensions between race and chatbots create new opportunities for people and machines. By making the abstract and disparate qualities of this problem space tangible, we can develop chatbots that are more capable of handling race-talk in its many forms. Our goal is to provide the HCI community with ways to begin addressing the question, how can chatbots handle race-talk in new and improved ways
The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib
The activation of glucocorticoid receptors (GR) by glucocorticoids increases stress-related memory through the activation of the MAPK signaling pathway and the downstream transcription factor Egr-1. Here, using converging in vitro and in vivo approaches, respectively, GR-expressing cell lines, culture of hippocampal neurons, and GR genetically modified mice (GRNesCre), we identified synapsin-Ia/Ib as one of the effectors of the glucocorticoid signaling cascade. Stress and glucocorticoid-induced activation of the GR modulate synapsin-Ia/Ib through two complementary mechanisms. First, glucocorticoids driving Egr-1 expression increase the expression of synapsin-Ia/Ib, and second, glucocorticoids driving MAPK activation increase its phosphorylation. Finally, we showed that blocking fucosylation of synapsin-Ia/Ib in the hippocampus inhibits its expression and prevents the glucocorticoid-mediated increase in stress-related memory. In conclusion, our data provide a complete molecular pathway (GR/Egr-1/MAPK/Syn-Ia/Ib) through which stress and glucocorticoids enhance the memory of stress-related events and highlight the function of synapsin-Ia/Ib as molecular effector of the behavioral effects of stress
Variability in energy expenditure is much greater in males than females
publishedVersionPaid open acces
Variability in energy expenditure is much greater in males than females
In mammals, trait variation is often reported to be greater among males than females. However, to date, mainly only morphological traits have been studied. Energy expenditure represents the metabolic costs of multiple physical, physiological, and behavioral traits. Energy expenditure could exhibit particularly high greater male variation through a cumulative effect if those traits mostly exhibit greater male variation, or a lack of greater male variation if many of them do not. Sex differences in energy expenditure variation have been little explored. We analyzed a large database on energy expenditure in adult humans (1494 males and 3108 females) to investigate whether humans have evolved sex differences in the degree of interindividual variation in energy expenditure. We found that, even when statistically comparing males and females of the same age, height, and body composition, there is much more variation in total, activity, and basal energy expenditure among males. However, with aging, variation in total energy expenditure decreases, and because this happens more rapidly in males, the magnitude of greater male variation, though still large, is attenuated in older age groups. Considerably greater male variation in both total and activity energy expenditure could be explained by greater male variation in levels of daily activity. The considerably greater male variation in basal energy expenditure is remarkable and may be explained, at least in part, by greater male variation in the size of energy-demanding organs. If energy expenditure is a trait that is of indirect interest to females when choosing a sexual partner, this would suggest that energy expenditure is under sexual selection. However, we present a novel energetics model demonstrating that it is also possible that females have been under stabilizing selection pressure for an intermediate basal energy expenditure to maximize energy available for reproduction. (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe
Energy compensation and adiposity in humans
Acknowledgments The DLW database, which can be found at https://doubly-labelled-water-database.iaea.org/home, is hosted by the IAEA and generously supported by Taiyo Nippon Sanso and SERCON. We are grateful to the IAEA and these companies for their support and especially to Takashi Oono for his tremendous efforts at fundraising on our behalf. The authors also gratefully acknowledge funding from the Chinese Academy of Sciences (CAS 153E11KYSB20190045) to J.R.S. and the US National Science Foundation (BCS-1824466) awarded to H.P. The funders played no role in the content of this manuscript. We are grateful for the data submission of David Ludwig and Cara Ebbeling, and for the analysis by Steve Heymsfield of his own data indicating no change in FFM hydration with age in adults.Peer reviewedPublisher PD
- …