1,266 research outputs found
Music listening predicted improved life satisfaction in university students during early stages of the COVID-19 pandemic
Quarantine and spatial distancing measures associated with COVID-19 resulted in substantial changes to individuals’ everyday lives. Prominent among these lifestyle changes was the way in which people interacted with media—including music listening. In this repeated assessment study, we assessed Australian university students’ media use (i.e., listening to music, playing video/computer games, watching TV/movies/streaming videos, and using social media) throughout early stages of the COVID-19 pandemic in Australia, and determined whether media use was related to changes in life satisfaction. Participants (N = 127) were asked to complete six online questionnaires, capturing pre- and during-pandemic experiences. The results indicated that media use varied substantially throughout the study period, and at the within-person level, life satisfaction was positively associated with music listening and negatively associated with watching TV/videos/movies. The findings highlight the potential benefits of music listening during COVID-19 and other periods of social isolation
Star Cluster Formation in Clouds with Externally Driven Turbulence
©The Author(s) 2022. Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Star clusters are known to be formed in turbulent molecular clouds. How turbulence is driven in molecular clouds and what effect this has on star formation is still unclear. We compare a simulation setup with turbulent driving everywhere in a periodic box with a setup where turbulence is only driven around the outside of the box. We analyse the resulting gas distribution, kinematics, and the population of stars that are formed from the cloud. Both setups successfully produce a turbulent velocity field with a power law structure function, the externally driven cloud has a more central, monolithic, clump, while the fully driven cloud has many smaller, more dispersed, clumps. The star formation follows the cloud morphology producing large clusters, with high star forming efficiency in the externally driven simulations and sparse individual star formation with much lower star formation efficiency in the fully driven case. We conclude that the externally driven method, which resembles a Global Hierarchical Collapse (GHC) scenario, produces star clusters that more closely match with observations.Peer reviewe
Structural Benchmark Tests of Composite Combustion Chamber Support Completed
A series of mechanical load tests was completed on several novel design concepts for extremely lightweight combustion chamber support structures at the NASA Glenn Research Center (http://www.nasa.gov/glenn/). The tests included compliance evaluation, preliminary proof loadings, high-strain cyclic testing, and finally residual strength testing of each design (see the photograph on the left). Loads were applied with single rollers (see the photograph on the right) or pressure plates (not shown) located midspan on each side to minimize the influence of contact stresses on corner deformation measurements. Where rollers alone were used, a more severe structural loading was produced than the corresponding equal-force pressure loading: the maximum transverse shear force existed over the entire length of each side, and the corner bending moments were greater than for a distributed (pressure) loading. Failure modes initiating at the corner only provided a qualitative indication of the performance limitations since the stress state was not identical to internal pressure. Configurations were tested at both room and elevated temperatures. Experimental results were used to evaluate analytical prediction tools and finite-element methodologies for future work, and they were essential to provide insight into the deformation at the corners. The tests also were used to assess fabrication and bonding details for the complicated structures. They will be used to further optimize the design of the support structures for weight performance and the efficacy of corner reinforcement
Research and Education in Computational Science and Engineering
Over the past two decades the field of computational science and engineering
(CSE) has penetrated both basic and applied research in academia, industry, and
laboratories to advance discovery, optimize systems, support decision-makers,
and educate the scientific and engineering workforce. Informed by centuries of
theory and experiment, CSE performs computational experiments to answer
questions that neither theory nor experiment alone is equipped to answer. CSE
provides scientists and engineers of all persuasions with algorithmic
inventions and software systems that transcend disciplines and scales. Carried
on a wave of digital technology, CSE brings the power of parallelism to bear on
troves of data. Mathematics-based advanced computing has become a prevalent
means of discovery and innovation in essentially all areas of science,
engineering, technology, and society; and the CSE community is at the core of
this transformation. However, a combination of disruptive
developments---including the architectural complexity of extreme-scale
computing, the data revolution that engulfs the planet, and the specialization
required to follow the applications to new frontiers---is redefining the scope
and reach of the CSE endeavor. This report describes the rapid expansion of CSE
and the challenges to sustaining its bold advances. The report also presents
strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie
Artificial mass loading disrupts stable social order in pigeon dominance hierarchies
Dominance hierarchies confer benefits to group members by decreasing the incidences of physical conflict, but may result in certain lower ranked individuals consistently missing out on access to resources. Here, we report a linear dominance hierarchy remaining stable over time in a closed population of birds. We show that this stability can be disrupted, however, by the artificial mass loading of birds that typically comprise the bottom 50% of the hierarchy. Mass loading causes these low-ranked birds to immediately become more aggressive and rise-up the dominance hierarchy; however, this effect was only evident in males and was absent in females. Removal of the artificial mass causes the hierarchy to return to its previous structure. This interruption of a stable hierarchy implies a strong direct link between body mass and social behaviour and suggests that an individual's personality can be altered by the artificial manipulation of body mass
How predation shapes the social interaction rules of shoaling fish
Predation is thought to shape the macroscopic properties of animal groups, making moving groups more cohesive and coordinated. Precisely how predation has shaped individuals' fine-scale social interactions in natural populations, however, is unknown. Using high-resolution tracking data of shoaling fish (Poecilia reticulata) from populations differing in natural predation pressure, we show how predation adapts individuals' social interaction rules. Fish originating from high predation environments formed larger, more cohesive, but not more polarized groups than fish from low predation environments. Using a new approach to detect the discrete points in time when individuals decide to update their movements based on the available social cues, we determine how these collective properties emerge from individuals' microscopic social interactions. We first confirm predictions that predation shapes the attraction–repulsion dynamic of these fish, reducing the critical distance at which neighbours move apart, or come back together. While we find strong evidence that fish align with their near neighbours, we do not find that predation shapes the strength or likelihood of these alignment tendencies. We also find that predation sharpens individuals' acceleration and deceleration responses, implying key perceptual and energetic differences associated with how individuals move in different predation regimes. Our results reveal how predation can shape the social interactions of individuals in groups, ultimately driving differences in groups' collective behaviour.</jats:p
Seagrass meadows as a globally significant carbonate reservoir
There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 403 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m of sediment ranged between 3 and 1660 Mg PIC ha(-1), with an average of 654 +/- 24 Mg PIC ha(-1), exceeding those of POC reported in previous studies by about a factor of 5. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of -8 +/- 2 Mg PIC ha(-1) per degree of latitude (general linear model, GLM; p \u3c 0.0003). Using PIC concentrations and estimates of sediment accretion in seagrass meadows, the mean PIC accumulation rate in seagrass sediments is found to be 126.3 +/- 31.05 g PIC m(-2) yr(-1). Based on the global extent of seagrass meadows (177 000 to 600 000 km(2)), these ecosystems globally store between 11 and 39 Pg of PIC in the top metre of sediment and accumulate between 22 and 75 Tg PIC yr(-1), representing a significant contribution to the carbonate dynamics of coastal areas. Despite the fact that these high rates of carbonate accumulation imply CO2 emissions from precipitation, seagrass meadows are still strong CO2 sinks as demonstrated by the comparison of carbon (PIC and POC) stocks between vegetated and adjacent un-vegetated sediments
Pathway to the Square Kilometre Array - The German White Paper -
The Square Kilometre Array (SKA) is the most ambitious radio telescope ever
planned. With a collecting area of about a square kilometre, the SKA will be
far superior in sensitivity and observing speed to all current radio
facilities. The scientific capability promised by the SKA and its technological
challenges provide an ideal base for interdisciplinary research, technology
transfer, and collaboration between universities, research centres and
industry. The SKA in the radio regime and the European Extreme Large Telescope
(E-ELT) in the optical band are on the roadmap of the European Strategy Forum
for Research Infrastructures (ESFRI) and have been recognised as the essential
facilities for European research in astronomy.
This "White Paper" outlines the German science and R&D interests in the SKA
project and will provide the basis for future funding applications to secure
German involvement in the Square Kilometre Array.Comment: Editors: H. R. Kl\"ockner, M. Kramer, H. Falcke, D.J. Schwarz, A.
Eckart, G. Kauffmann, A. Zensus; 150 pages (low resolution- and colour-scale
images), published in July 2012, language English (including a foreword and
an executive summary in German), the original file is available via the MPIfR
homepag
Quasar accretion disk sizes from continuum reverberation mapping in the DES standard-star fields
Measurements of the physical properties of accretion disks in active galactic
nuclei are important for better understanding the growth and evolution of
supermassive black holes. We present the accretion disk sizes of 22 quasars
from continuum reverberation mapping with data from the Dark Energy Survey
(DES) standard star fields and the supernova C fields. We construct continuum
lightcurves with the \textit{griz} photometry that span five seasons of DES
observations. These data sample the time variability of the quasars with a
cadence as short as one day, which corresponds to a rest frame cadence that is
a factor of a few higher than most previous work. We derive time lags between
bands with both JAVELIN and the interpolated cross-correlation function method,
and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new
measurements include disks around black holes with masses as small as
, which have equivalent sizes at 2500\AA \, as small as
light days in the rest frame. We find that most objects have
accretion disk sizes consistent with the prediction of the standard thin disk
model when we take disk variability into account. We have also simulated the
expected yield of accretion disk measurements under various observational
scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find
that the number of disk measurements would increase significantly if the
default cadence is changed from three days to two days or one day.Comment: 33 pages, 24 figure
Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct
A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F.) had a pervasive deficit in episodic memory, but only one of them (R.F.) suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI) scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P.) implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC). Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal lesions on interconnectivity brain patterns
- …