19 research outputs found

    Numerical Study of Repair Strategies for Earthquake-Damaged CFST Bridge Columns

    Get PDF
    Concrete filled steel tubes (CFSTs) provide a unique, economical alternative to traditional reinforced concrete (RC) columns in highway bridges for their ease of construction and efficient structural properties. The steel tube provides optimal flexural resistance and continuous confinement to the infill concrete, while the concrete fill improves stiffness and strength of the column, and prevents inward local tube buckling of the steel tube. Recent research has developed a practical and structurally robust, column-to-foundation/cap-beam connection for use in mid-to-high seismic regions. This connection, referred to as the embedded ring (ER) connection, is a full-strength connection, where well-detailed, ER CFST columns exhibit local, outward tube buckling directly above the foundation/cap-beam when subjected to reverse-cyclic, lateral loadings. This typical ductile failure mode is readily identifiable post-earthquake events, and is uniquely advantageous compared to typical RC columns due to limited concrete spalling and the availability of the steel tube for welded connections. The main objective of this research was to develop practical repair strategies for ER CFST columns which exhibit this ductile failure progression, with the goal of reestablishing the original column strength and stiffness. Two strategies were developed: (1) a traditional plastic hinge relocation method that utilizes an enlarged, CFST pedestal that surrounds the damaged region, and (2) a performance-based repair that implements external energy dissipators and column-rocking to limit damage. A non-linear, numerical analysis approach was adopted to assess the hysteretic response of these repair methods in comparison to that of an undamaged, CFST column. Results indicated that both repair strategies successfully restored lost stiffness and strength, specifically peak strength values of 1.26Mp and 1.02Mp for the traditional and performance-based methods were observed, respectively, where Mp represents the plastic moment of the original column. Additionally, a limited experimental study was carried out on the proposed, bucking restrained, energy dissipator where, under cyclic-compressive loadings, compressive yielding (1.12Fy) and inelastic strains (9.0εy) were measured within the laterally-restrained, structural fuse of the dissipator

    Palladium-based ferroelectrics and multiferroics : theory and experiment

    Get PDF
    Palladium normally does not easily substitute for Ti or Zr in perovskite oxides. Moreover, Pd is not normally magnetic (but becomes ferromagnetic under applied uniaxial stress or electric fields). Despite these two great obstacles, we have succeeded in fabricating lead zirconate titanate with 30% Pd substitution. For 20:80 Zr:Ti the ceramics are generally single-phase perovskite (>99%), but sometimes exhibit 1% PbPdO2, which is magnetic below T=90K. The resulting material is multiferroic (ferroelectric-ferromagnet) at room temperature. The processing is slightly unusual (>8 hrs in high-energy ball-milling in Zr balls), and the density functional theory provided shows that it occurs because of Pd+4 in the oversized Pb+2 site; if all Pd+4 were to go into the Ti+4 perovskite B-site, no magnetism would result.PostprintPeer reviewe

    The Role of Sialyl Glycan Recognition in Host Tissue Tropism of the Avian Parasite Eimeria tenella

    Get PDF
    Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates

    Alignment methods for strapdown inertial systems.

    No full text

    Domestic medicine: or, A treatise on the prevention and cure of diseases by regimen and simple medicines. [electronic resource] : With an appendix, containing a dispensatory for the use of private practitioners. By William Buchan, M.D. Fellow of the Royal College of Physicians, Edinburgh.

    No full text
    Dedicated to Joseph Banks.Errata statement, p. [523].Index, [40] p. at end.Signatures: [A]p8s B-Up8s Wp8s X-2Kp8s (2K8 verso blank)Evans,Austin, R.B. Early Amer. medical imprints,Electronic reproduction.English Short Title Catalog,Reproduction of original from Boston Public Library

    Transcript and metabolite profiling for the evaluation of tobacco tree and poplar as feedstock for the bio-based industry

    Get PDF
    ** See also ERRATUM link below The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article
    corecore