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Abstract 

Numerical Study of Repair Strategies for Earthquake-Damaged CFST Bridge Columns 

 

James Robert Bumstead, M.S. 

 

University of Pittsburgh, 2019 

 

 

 

 

Concrete filled steel tubes (CFSTs) provide a unique, economical alternative to traditional 

reinforced concrete (RC) columns in highway bridges for their ease of construction and efficient 

structural properties. The steel tube provides optimal flexural resistance and continuous 

confinement to the infill concrete, while the concrete fill improves stiffness and strength of the 

column, and prevents inward local tube buckling of the steel tube. Recent research has developed 

a practical and structurally robust, column-to-foundation/cap-beam connection for use in mid-to-

high seismic regions. This connection, referred to as the embedded ring (ER) connection, is a full-

strength connection, where well-detailed, ER CFST columns exhibit local, outward tube buckling 

directly above the foundation/cap-beam when subjected to reverse-cyclic, lateral loadings. This 

typical ductile failure mode is readily identifiable post-earthquake events, and is uniquely 

advantageous compared to typical RC columns due to limited concrete spalling and the availability 

of the steel tube for welded connections.  

The main objective of this research was to develop practical repair strategies for ER CFST 

columns which exhibit this ductile failure progression, with the goal of reestablishing the original 

column strength and stiffness. Two strategies were developed: (1) a traditional plastic hinge 

relocation method that utilizes an enlarged, CFST pedestal that surrounds the damaged region, and 

(2) a performance-based repair that implements external energy dissipators and column-rocking to 

limit damage. A non-linear, numerical analysis approach was adopted to assess the hysteretic 

response of these repair methods in comparison to that of an undamaged, CFST column. Results 
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indicated that both repair strategies successfully restored lost stiffness and strength, specifically 

peak strength values of 1.26Mp and 1.02Mp for the traditional and performance-based methods 

were observed, respectively, where Mp represents the plastic moment of the original column. 

Additionally, a limited experimental study was carried out on the proposed, bucking restrained, 

energy dissipator where, under cyclic-compressive loadings, compressive yielding (1.12Fy) and 

inelastic strains (9.0εy) were measured within the laterally-restrained, structural fuse of the 

dissipator. 
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1.0 Introduction 

1.1 Motivation for Research 

Concrete filled steel tubes (CFSTs) have become an increasingly viable option for use in 

highway bridge columns, particularly where accelerated bridge construction (ABC) and seismic 

resiliency is required. CFSTs offer a unique advantage over conventional reinforced concrete (RC) 

bridge columns for their improved mechanical efficiency and constructability. The steel tube 

provides flexural resistance at the optimum location in the cross section as well as improved 

confinement relative to spiral reinforcement typically used in RC columns. The concrete infill 

provides increased stiffness and strength, and prevents inward local buckling of the steel tube. In 

addition, CFSTs inherently facilitate ABC, as the steel tube acts as both the transverse and 

longitudinal reinforcing as well as the formwork for the column. The incorporation of self-

consolidating concrete, which eliminates the need for vibration, can further improve accelerated 

construction (Lehman and Roeder, 2012; Roeder et al., 2014). 

The ductility and energy dissipation capabilities of CFSTs makes them attractive for use in 

regions with seismic hazards. Until recently, their widespread use in highway bridge construction 

has been limited, in part due to a lack of standard connection details. However, in recent years, 

extensive research has developed several CFST connections for use in highway bridge 

construction, particularly for use in moderate and high seismic regions. Among these connections 

is the embedded ring (ER) connection, which is a full-strength moment connection that consists 

solely of an annular ring welded to the base of the CFST and embedded in the adjacent concrete 

element. When appropriately designed, the failure mode of the ER connection is characterized by 
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hinging in the CFST column adjacent to the connecting concrete element consisting of tube 

buckling, followed by tube tearing for larger reversed cyclic drift demands (Stephens et al., 2016b). 

This readily identifiable and accessible failure mode presents a unique and advantageous 

opportunity for repair following seismic events. Compared to typical, seismically damaged RC 

columns, damaged CFSTs exhibit a significant reduction in the amount of concrete spalling from 

the continuous confinement of the steel tube. In addition, the steel tube provides an opportunity 

for welded or bolted connections at the steel interface which is not possible in excessively spalled, 

RC columns.  

1.2 Research Objective 

The objective of this research is to develop a series of practical repair strategies for CFST 

bridge columns that can return strength and stiffness.  

1.2.1  Proposed Repair Strategies 

Given the success of recent research in plastic hinge relocation (Krish et al., 2018a; Lehman 

et al., 2001) and performance-based repairs (Chou and Chen, 2006; White and Palermo, 2016) the 

two proposed repair methods are provided herein that incorporate (1) section enlargement via a 

surrounding CFST pedestal and (2) externally attached energy dissipators to improve seismic 

performance. A numerical analysis approach was adopted for assessment where the proposed 

strategies were evaluated on the basis of their ability to reestablish loss strength, stiffness, and 
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ductility as compared to previous, experimental research of CFSTs that utilize the ER connection 

(Stephens et al., 2016a, 2016b).  

The first approach, depicted in Figure 1-1a, applies a CFST pedestal around the damaged 

region of the CFST column and is reinforced with rebar to provide resistance equivalent to the 

original plastic moment capacity of the column. The height and diameter of the pedestal was 

selected to ensure that adequate force transfer was provided by both natural bond as well as a series 

of force transfer mechanisms that are welded to the original CFST column. The latter was of 

particular interest in this study, where a suite of mechanisms was evaluated with varying geometry, 

quantity, and location.  

Similarly, a performance-based design approach depicted in Figure 1-1b, was taken where 

a CFST pedestal encases the damaged section. Column-rocking is initiated along the damaged 

region of the CFST by introducing a welded, annular plate at the base of the CFST to limit damage 

and eliminate the need for reinforcement to pass between the CFST pedestal and foundation 

(Staton et al., 2014). Lateral force and moment resistance are provided by external energy 

dissipators, namely buckling restrained bars (BRBars), that are bolted to the outside of the repair 

pedestal. This simple bolted connection provides a unique opportunity to efficiently replace the 

damaged BRBars post-earthquake. 
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Figure 1-1: Proposed repair strategies using (a) section enlargement and (b) external energy dissipators. 

1.3 Report Outline 

This report will consist of six chapter that are summarized as follows. 

Chapter 2 provides a literature overview of relevant research pertaining to the embedded 

ring connection and repair strategies of RC and CFST bridge columns.  

Chapter 3 details the analytical approach for modelling undamaged and damaged CFST 

bridge columns that was used in this research program. 

Chapter 4 introduces the plastic hinge relocation repair that utilizes section enlargement. 

A detailed overview is provided of its design strategy and numerical model as well as the 

monotonic, moment-drift responses of the various force transfer mechanisms investigated. A 

hysteretic response comparison is then made between the best repair strategy and an undamaged 

CFST column. 
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Chapter 5 covers the performance-based repair strategy where external energy dissipators 

(e.g. BRBars) are incorporated. First, the repair strategy is introduced and a design procedure is 

covered. Next, the BRBar is described, including an experimental testing procedure and its results. 

Next, the modelling and design procedure of the BRBar repair strategy is covered and the results 

of their hysteretic performances are provided.  

Chapter 6 provides a summary of the significant conclusions derived from this research 

program and concludes with future research recommendations. 
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2.0 Literature Review 

The repair and retrofit of damaged reinforced concrete (RC) columns  has been researched 

extensively (He et al., 2015, 2013; White and Palermo, 2016; Wu and Pantelides, 2017). In 

addition, repair strategies for damaged CFST columns in buildings have been previously evaluated 

due to their widespread use in building construction in Asia (Chou and Chen, 2006; Tao et al., 

2008, 2007). This chapter summarizes these research trends to provide insight on developing a 

successful repair strategy for CFST bridge columns that utilize the ER connection. First, embedded 

and exposed CFST connection types are reviewed to determine typical connection failure modes, 

then plastic hinge relocation and performance-based repair strategies for RC and CFST columns 

are covered to provide a foundational understanding of current repairs that have been successful. 

2.1 CFST Column to Foundation/Cap-Beam Connections 

CFST connections can be characterized as either exposed dowel type or embedded. 

Connection performance is assessed by the ability of the connection to develop the strength of the 

column and ductility capacity under monotonic and reverse cyclic loadings. The following sections 

provide a background exposed\dowel type versus embedded CFST connections and summarizes 

research on the two connection types. 
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2.1.1  Exposed CFST Connections 

Extensive research has been conducted on exposed based-plate connections (Hitaka et al., 

2003; Hsu and Lin, 2006; Jothimani and Umarani, 2019; Kadoya et al., 2004), which typically 

consist of a steel plate welded to the base of the CFST column, with steel bolts or dowels that 

connect to the base plate and anchor into the adjacent concrete component. These connections are 

usually easier to construct than embedded connections, however it can be difficult to develop the 

full plastic capacity of the CFST and achieve sufficient ductility, as the strength and ductility are 

controlled by the anchor bolts rather than the CFST column (Hsu and Lin, 2006; Kadoya et al., 

2004). In the case of the 1995 Kobe Earthquake, it was found that exposed base-plate columns 

were significantly damaged and performed far more poorly relative to embedded type connections, 

due to fracture of the anchor bolts and crushing of the concrete core (Azizinamini and Ghosh, 

1997). 

Following the Kobe Earthquake, there was an effort to improve the structural performance 

of exposed base-plate CFST connections. Kadoya et al. (2004), addressed this concern by 

introducing additional central reinforcing bars (CRBs) into the exposed, base-plate connection 

detail, as illustrated in Figure 2-1. The connection is constructed by partially embedding several 

CRBs into the foundation prior to setting the CFST. The exposed portion of the CRBs are then 

passed through a concentric hole in the base-plate which is welded to the end of the CFST. 

In this study, the hysteretic response of 10 specimens under combined axial and horizontal 

loading was evaluated. The primary parameters included: the loading condition (constant or 

varying magnitude axial load), the presence of CRBs, and the size CRBs. Results showed that the 

additional CRBs successfully improved the performance of base-plate CFST columns. The 

governing failure mode consisted of cone failure of the foundation concrete due to anchor bolt 
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pullout combined with compressive failure of the filler mortar beneath the base plate. More 

importantly, the failure of the base plate nor rupture of the anchor bolts were observed during 

testing. When compared to baseline columns without CRBs, the initial stiffness improved by 20% 

and the ultimate moment capacity increased 40% – 80% (Kadoya et al., 2004).  

 

 

Figure 2-1: Exposed base plate connection with CRBs (Kadoya et al. 2004). 

 

2.1.2  Embedded CFST Connections 

Embedded CFST connections are fixed into the foundation during construction through 

embedment of the steel tube and have been previously researched extensively (Hsu and Lin, 2006; 

Kappes et al., 2016; Marson and Bruneau, 2004; Stephens et al., 2016a) Though more difficult to 

construct, this type of connection tends to have superior rigidity over exposed connections. 

However, high concentrated stresses located at the interface of the embedded CFST and 

surrounding concrete leads to concrete bearing stress failures and degradation in the rigidity of the 
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connection, shown in Figure 2-2a (Hsu and Lin, 2006). Hsu and Lin (2006), proposed a new 

embedded connection detail, shown in Figure 2-2b, which introduces steel stiffeners welded to the 

base of the embedded CFST. The proposed detail, reduces crushing of the embedded, surrounding 

concrete, improves column rigidity, and shifts the critical damage of the connection from the base 

of the CFST, to the top of the adjoined concrete element. 

 

 

Figure 2-2: Embedded CFST connection (a) without stiffeners and (b) with stiffeners (Hsu and Lin 2006). 

 

Seven square CFST specimens were tested with varying embedment depths and connection 

detailing. Three specimens without stiffeners were tested with depths varying from 0.5D, 1.0D, 

and 1.5D where D represents the width of the CFST. Similarly, four stiffener reinforced specimens 

were tested with the additional specimen having an embedment depth of 0D. Columns were sized 

as approximately 14-inch square tubes with a 0.25-inch thick wall. The end plate was 1.25-inch 

thick and the reinforcing stiffeners were sized at 3-inch wide and 5/8-inch thick plates. Hydraulic 

jacks applied via a transverse loading beam applied an axial load to the column while a servo-

controlled hydraulic actuator provided the lateral, reverse cyclic loading.  
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As shown in Figures 2-3a to 2-3c, the hysteretic performance is directly related to the 

embedment depth. Comparing Figures 2-3a and 2-3b, it can be seen that as embedment depth 

increases, the rigidity and energy dissipation capability greatly improve, however a plateau was 

observed when the embedment depth was equal to the depth of the section (1.0D). In a similar 

effect, by comparing Figure 2-3b with 2-3c, it is observed that additional stiffeners added to the 

base connection can improve energy dissipating and drift capabilities (Hsu and Lin, 2006). 

 

 

Figure 2-3: Hysteretic performance of a (a) stiffened connection at 0D and (b) 0.5D, and (c) an unstiffened 

connection at 0.5D (Hsu and Lin 2006). 

 

2.1.3  The Embedded Ring (ER) Connection 

Lehman and Roeder (2012), proposed an embedded CFST connection for the application 

of CFST bridge columns in moderate and high seismic regions. This connection, referred to as the 

embedded ring (ER) connection, consists of a steel, annular ring welded to the submerged end of 

the CFST column as shown in Figure 2-4. In contrast to the previously discussed exposed and 

embedded connections, the ER connection relies solely on the annular ring for force transfer and 
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moment development (i.e. no additional anchor bolts nor reinforcement are required to develop 

the connection), which in turn greatly facilitates construction. In addition to a monolithic 

construction procedure, a grouted connection was proposed for application in accelerated bridge 

construction and use of precast concrete elements as depicted in Figures 2-4a to 2-4d (Lehman and 

Roeder, 2012).  

 

 

Figure 2-4: Proposed grouted, ER connection. 

 

A large-scale experimental program was performed of the ER connection on 19 specimens 

to observe the effects of varying several design, geometric, and loading properties. Specifically, 

the behavior of the both the monolithic and grouted connection was of interest, as well as the effect 

of varying tube diameter, tube diameter over thickness ratio (D/t), and embedment depth. 

Specimens were tested in a self-reaction frame using an axial load of approximately 10% the gross 

compressive strength of the CFST, in addition to a cyclic lateral load to simulate earthquake 

loading effects.  



 12 

The results showed that larger embedment depths significantly improve drift and moment 

capacities, where seismic drift demands were far exceeded with minimal degradation and damage. 

Inadequate embedment resulted in premature failure before the plastic moment capacity was 

achieved due to significant concrete damage at the connection interface. (Lehman and Roeder, 

2012). The ER connection has undergone extensive experimental, parametric investigations to 

assess the influence of various design parameters on connection performance. Stephens et al. 

(2016b), synthesized these findings and developed a series of design equations and provided 

optimal material properties for the ER, CFST for its use in mid-to-high seismic regions. Among 

these design parameters are (1) ER dimensions, (2) embedment depth, and (3) specific depth to 

resist punching shear (Stephens et al., 2016b).  

Through research, it was found that a well-detailed ER, CFST column can effectively 

produce a very stiff and ductile response under lateral, cyclic loadings. Connections inadequately 

designed typically exhibited a premature, non-ductile failure response, depicted in Figure 6a, 

located at the interface of the embedded CFST. This failure mode is considered irreparable and 

full replacement of the CFST and foundation/cap-beam are required (Lehman and Roeder, 2012; 

Stephens, 2016). The damage progression of a well-designed connection with sufficient 

embedment depth (i.e. around 0.9D) is characterized by small, localized foundation/cap-beam 

cracking around the same time as an insufficiently embedded connection, however, cracks tend to 

remain contained with further lateral deflections. Furthermore, the failure mode of a well-detailed 

connection is centralized to the steel tube and is characterized by outward, tube buckling typically 

observed around 3-4% drift. Subsequent drift demands further deteriorate the steel tube where 

around 6-7% steel tube tearing is observed with concrete spalling. Until tearing occurs however, 

minimal concrete confinement loss is observed even after severe outward tube buckling. This 
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ductile tube buckling mode is considered to be a reparable damage state, and is shown in Figure 

6b for clarity (Lehman and Roeder, 2012). 

 

Figure 2-5: Example of an (a) irreparable, brittle CFST foundation/cap-beam failure and (b) a reparable, 

ductile CFST tube failure (Lehaman and Roeder 2012; Stephens 2019). 

2.2 Plastic Hinge Relocation Repairs 

Damage in reinforced concrete columns subjected to seismic loading is commonly 

localized to the plastic hinge region. As such, a common solution for repair is plastic hinge 
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relocation which aims to redevelop the plastic hinge location away from the previous location. 

Generally, hinge relocation is achieved in two ways: (1) jacketing the repaired region using fiber 

reinforced polymer (FRP) wraps (Rutledge et al., 2014; Tao et al., 2008) and (2) enlarging the 

diameter of damaged location with concrete or grout (Krish et al., 2018a; Lehman et al., 2001). 

The following section provides an overview of these two methods as they are applied to both RC 

and CFST columns. 

2.2.1  Fiber Reinforced Polymer (FRP) Wraps 

The use of FRP wraps has gained noticeable traction in previous years for its potential as 

a plastic hinge relocation solution for damaged columns (Alexander et al., 2008; He et al., 2013; 

Truong et al., 2017). FRP wrapping lends itself well as a rapid-repair solution where, once 

specimen surface preparation is sufficiently completed, jacketing can be readily applied to concrete 

using epoxy and/or anchors. Researchers have successfully demonstrated that FRPs can reestablish 

lost shear and flexural strength which is dictated by the orientation of the FRP; the flexural capacity 

is increased by orienting the fibers vertically, while the shear capacity is increased by orienting 

them horizontally. In addition, improving concrete confinement is also a primary objective of 

repair/retrofit strategies, and it has been shown that jacketing damaged concrete sections with 

FRPs, significantly improves confinement and structural response  (He et al., 2013; Rutledge et 

al., 2014). 

A number of research programs have been conducted to implement repair objectives to 

regain strength, stiffness, and concrete confinement in a wide damage range of concrete columns, 

and an extensive review can be found in He et al. (2015).  Rutledge et al. (2014) sought to provide 

a rapid-repair solution of earthquake-damaged RC columns that have experienced severe spalling 
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and buckling, and/or rupture of longitudinal reinforcement. The proposed repair utilized carbon 

fiber reinforced polymer (CFRP) jackets that wrap the damage region, restoring flexural, shear, 

and ductile capacity. Jackets were developed by incorporating CFRP anchors that anchored into 

the foundation. Three large-scale experimental tests were performed at varying degrees of damage 

and repair objectives. For example, the first specimen experienced only bar buckling at the plastic 

hinge region and was repaired with CFRP sheets at the damaged region, and the new plastic hinge 

region, to improve its ductility response. The final two specimens were repaired solely in the 

original plastic hinge region; however, the second specimen experienced bar buckling, while the 

third specimen experienced both bar buckling and rupture in the damaged region. These repairs 

are depicted in Figures 2-6a to 2-6c, respectively (Rutledge et al., 2014). 

 

 

Figure 2-6: CFRP repair of (a) Specimen 1, (b) Specimen 2, and (c) Specimen 3 Rutledge et al. (2014). 

 

Specimens, sized at 23.5-inch in diameter and reinforced with 16, #6 longitudinal bars and 

#3 spirals, were initially tested in a previous study performed by (Goodnight et al., 2012) where 

columns were subjected to reverse cyclic lateral loadings that matched that of real earthquake 

loading histories. Under Rutledge et al. (2014), post-earthquake “aftershock” loadings were 
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applied to the damaged, unrepaired column to obtain a force-displacement response for 

comparisons. Then, repaired columns were subjected to a displacement-controlled, three cycle set 

load history. Results indicated that the CFRP wrap repair strategy could successfully reestablish 

column strength and ductility capacities, however over-strengthening the column, such as in the 

first specimen, resulted in failure in the foundation which otherwise should be capacity-protected. 

Without additional strengthening, Specimen #2 proved to successfully develop a plastic hinge 

above the repair region while Specimen #3, which experienced both bar buckling and fracture, 

failed prematurely due to the rupturing of the CFRP anchors (Rutledge et al., 2014). 

Researchers have used the success of repair RC structures using FRP jackets as motivation 

to extend this repair strategy to CFST columns. While there is limited research on the utilizing 

FRP jackets for plastic hinge relocation of earthquake-damaged, CFST columns, there has been an 

extensive research program where CFRP jackets have been used to repair fire-damaged CFSTs 

(Tao et al., 2008, 2007). Tao et al. (2008) observed the effects of repairing eight CFST beam-

column specimens that experience extensive fire damaged; four specimens were circular while the 

other four were square. Damaged specimens exhibited global and local tube buckling as well as 

internal concrete crushing before repair, at the location of buckling, though crushing was not 

observed in specimens that did not buckle. Upon repair, it was found that CFRP wrapped 

specimens were able to restore some strength and stiffness, however the strength was not returned 

entirely to the original capacity. The number of CFRP layers directly correlated to an increase in 

ductility performance, where increasing from one to two layers, increased the ductility coefficient 

(ratio of ultimate displacement to yield displacement) from 11.25 to 12.58, respectively. This is 

due to the delay or even prevention of tube buckling due to the increase in layers. Shape also 

noticeably contributed to prevention of tube buckling, where circular specimens did not experience 
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local tube buckling, while square specimens did. This is most likely contributed to the fact that 

circular specimens have superior confinement effects from CFRP jacketing over square specimens.  

2.2.2  Section Enlargement 

Section enlargement repair strategies utilize a built-up section around the damaged region, 

to recover, and exceed the original flexural moment capacity of the previous plastic hinge region, 

thus shifting the failure region above the repaired section. This is achieved by significantly 

increasing the cross-sectional size of the column by bonding new concrete around the damaged 

region. Section enlarged repairs are conventionally constructed by providing formwork around the 

column to place the new concrete, which is commonly left after construction to improve 

confinement of the repair concrete (Krish et al., 2018a).  

Lehman et al. (2001) performed an experimental investigation on the effectiveness of 

section enlargement repairs of RC columns with moderate and severe damage resulting from 

lateral loading. The moderately damaged columns only experienced concrete spalling and bar 

yielding, and were repaired using conventional methods such as epoxy injections and concrete 

cover replacement. The severely damaged columns, having experienced bar buckling and rupture, 

underwent a more extensive repair procedure. Ruptured bars were replaced using mechanical 

couplers and new reinforced concrete was jacketed around the damaged section. One column was 

repaired to force plastic hinging above the repair, while the other was designed to the original 

capacity, thus reestablishing plastic hinging in the enlarged section. Typical columns were 2-ft in 

diameter and were loaded axially and laterally at a location 8-ft above the base. The hysteretic 

performances of the repaired columns were compared against undamaged columns and it was 

found that the repaired severely damaged columns successfully regained strength and stiffness, 
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and achieved their repair intention for all cases (i.e. plastic hinging above or at the enlarged 

section). The moderately damaged column, however, failed to reestablish its previous stiffness and 

strength.  

One of the key design considerations of this investigation was limiting the shear force 

imposed on the original column, due to the reduced height available to develop the plastic moment 

above the pedestal. However, a minimum pedestal height is required to develop the repair 

reinforcement, as well as to sufficiently repair the damaged area of the original plastic hinge. 

Overall, the results of this study successfully demonstrate the effectiveness of section enlargement 

as repair strategy for earthquake-damaged bridge columns (Lehman et al., 2001).  

More recently, Krish et al. (2018), carried out an experimental investigation on plastic 

hinge relocation of severely damaged RC columns to demonstrate that RC columns that have 

experienced both longitudinal bar buckling and fracture, can be readily repaired. A similar repair 

protocol as described in Lehman et al. (2001) was followed for six, severely damaged columns 

with a focus on using commercially available repair materials (i.e. two-part epoxy and ready-mix 

concrete) to demonstrate that these materials can be used to streamline the repair process. Column 

pedestals were designed using moment-curvature analyses to ensure that the applied moment at 

the repaired section, does not exceed the pedestal’s elastic moment capacity (Krish et al., 2018b). 

In addition to this, a focus was made on providing methods to improve the bonding performance 

of the ruptured bars in the repair concrete. It was observed from the first tested column that if the 

repaired bars were left untreated to improve bonding, bars would experience severe debonding 

from the repair concrete under extreme lateral loads and ultimately would result in a softening 

response and pinching behavior of the column. As shown in Figure 2-7a, a steel, mechanical anchor 

head can be attached to the base of the fractured bar to improve their flexural response. This 
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approach was applied to two of the repaired columns and proved to reliably develop the strain 

response of the headed, fractured bar with no debonding observed, as shown in Figure 2-7b (Krish 

et al., 2018a). 

 

 

Figure 2-7: (a) Mechanical head to improve concrete bonding of repaired rupture bar and (b) its strain vs 

column displacement response (Krish et al. 2018b). 

2.3 Performance Based Repair Strategies 

The Northridge earthquake of 1994 and the Kobe earthquake of 1995, brought about 

significant change to seismic design philosophies. During this time, conventional seismic design 

methodologies were employed with the intent of designing for limits of stresses and member forces 

against prescribed lateral earthquake forces (Ghobarah, 2001). This design direction is largely 

based on input parameters, like material properties and strength, and relies on the inelastic behavior 

of the entire steel structure for energy dissipation. While this approach typically prevents collapse, 

excessive seismic damage seen as residual column drifts and member displacement is 



 20 

commonplace, and often times the structure will be deemed unserviceable after seismic events.  In 

response, a new design philosophy has come forth which focuses on structure performance, such 

as its serviceability and repairability post-earthquake events. This performance based seismic 

design (PBSD) approach aims to control damage to an isolated region, or limit damage of the 

structure in general, allowing for a rapid-repair solution that can easily be applied post-earthquake 

(Shoeibi et al., 2017). Recent research has sought to implement these design philosophies to bridge 

structures as well, specifically by incorporating external or internal energy dissipators for damage 

isolation, and/or implementing column-rocking and column self-centering techniques to limit 

damage and residual drifts. This section highlights these PBSD techniques and concludes with 

research programs that have successfully implemented them to RC and CFST bridge columns. 

2.3.1  Available Energy Dissipators for Implementation in Bridge Structures 

Energy dissipators are uniquely designed systems that are preemptively engineered to 

dissipate energy. The mechanism to dissipate energy can be categorized as either a (1) yielding or 

(2) non-yielding mechanism. The latter can consist of viscous dampers that resist motion through 

viscous friction or friction dampers which can dissipate energy through friction buildup between 

steel plates. These non-yielding mechanism, however, are typically more costly and less effective 

and were not considered in this research (White, 2014), while yielding mechanisms are more 

suitable for implementation in bridge structures.  

Energy dissipators that utilize a yielding mechanism are typically made of steel, and rely 

on plastic development from large inelastic deformation to dissipate energy. RC structures, for 

example, depend on plastic development of internal steel rebar for energy dissipation which 

commonly results in large, residual deformations, making continued service unlikely. At the 



 21 

forefront of research, is the application of Shape Memory Alloys (SMAs) as reinforcement in RC 

structures. SMAs can exhibit large deformations, and upon the application of heat or the removal 

of stress, will return to their original, undeformed shape. Nickel-Titanium SMAs (Nitinol) is the 

most commonly investigated superelastic SMA for structural application and contains 56% nickel 

and 44% titanium alloy. The ideal hysteretic response is shown in Figure 2-8 (Abdulridha et al., 

2013).  

 

 

Figure 2-8: Idealized hysteretic response of Shape Memory Alloys (Abdulridha et al. 2013). 

 

As shown, the unloading response of the SMA follows the reverse of its loading stage, 

creating a flag-shaped, hysteretic response with theoretically no permanent deformation 

(Abdulridha et al., 2013). 

U-Shaped Flexural Plates (UFPs) are a section of mild steel, bent into a U-shape that 

dissipates energy through shear loadings. The relative displacement of one side of the UFP creates 

a rolling type phenomenon along the curved region of the plate, ideally isolating the steel yielding 

to the semi-circular region of the UFP, allowing large deformation and stable, hysteretic 

development (Baird et al., 2014). UFPs have increased in popularity in seismic research due to 
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their successful implementation into coupled timber shear wall systems and have even been 

employed in modern day structures such as the Southern Cross Hospital in Christchurch, New 

Zealand (Baird et al., 2014; White, 2014). 

Tension and compressive loading and unloading action is frequently seen in structural 

members resisting lateral forces from earthquakes. To concentrate plastic development and energy 

dissipation, some of these particular members can be manufactured with a reduced cross-section 

across their midspan length. This is particularly advantageous, because if designed properly, only 

the reduced cross-section will yield, allowing for the rest member to remain elastic. However, by 

reducing the moment of inertia of the cross-section at the midsection, the compressive loading 

enforced on the member can result in global buckling before yielding can occur, thus greatly 

reducing the member’s energy dissipation capacity. To overcome this, a buckling restraining 

mechanism is introduced that physically restrains lateral movement of the cross-section, therefore 

enabling the development of a symmetrical hysteretic curves (i.e. yielding in both tension and 

compression). This type of energy dissipator, called a buckling restrained fuse (BRFs), originated 

from buckling restrained braces (BRBs) which follow the same energy dissipating principal. BRFs 

are commonly made of plain, circular bars with a reduced diameter whereas BRBs have a variety 

of cross-sections including flat bars or cruciforms (Bruneau et al., 2011; White, 2014). 

2.3.2  Column-Rocking and Self-Centering Techniques 

Low-damage bridge column design philosophies have gained recent traction for their 

ability to maximize energy dissipative capabilities, while reducing residual drifts and subsequent 

repair costs (Marriott et al., 2011; Staton et al., 2014). To achieve this, two strategies have 

emerged: (1) column-rocking and (2) column self-centering. The first, as depicted in Figure 2-9, 
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is achieved by debonding the base of the column from the footer/cap-beam by using a piece of 

interfacial membrane, like a steel plate or elastomeric rubber, allowing the column to rock freely 

along the rocking interface with limited damage. This is then combined with an internally 

unbonded, post-tensioned bar that continuously applies a self-centering, axial load through the 

column and into the adjacent concrete element. This results in minimal residual drifts post-

earthquake (White, 2014).  

 

 

Figure 2-9: Bridge column with controlled rocking, and self-centering effects from an internal post-tension 

bar (White and Palermo 2016). 

 

Residual drift reduction can also be achieved by incorporating, segmentally constructed, 

post-tensioned bridge columns. Here, individual segments of the bridge column are stacked on 

each other, and connected through a concentric, post-tensioned duct. This allows for column-

rocking at each segmental interface as well as a recentering, axial force to reduce residual drift 

(Dawood et al., 2012). In addition, SMAs are frequently employed to achieve self-centering effects 
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due to their shape memory nature. This is achieved by internally or externally attaching the SMAs 

at the extreme deformation location of the structure, which reduces residual deformations upon 

reloading (Abdulridha et al., 2013; Varela and ‘Saiid’ Saiidi, 2016). 

2.3.3  Dissipative Controlled Rocking (DCR) Columns 

Dissipative controlled rocking (DCR) combine debonded, post-tensioning rods with 

column rocking and energy dissipative devices. While research in implementing similar DCR 

columns objectives in the repair strategies of CFST bridge columns is limited, there has been 

extensive studies for the new-construction and repair of RC DCR bridge columns. White and 

Palermo (2016) proposed a controlled damage, member socket column system (Figure 2-10a) that 

incorporates self-centering, post-tensioned bars and debonded, internal reinforcement to induce a 

natural rocking surface along the adjacent concrete element interface. This connection is 

preemptively designed to facilitate a post-earthquake repair strategy that utilizes externally 

attached BRFs by including cast-in place threaded inserts located at the base of the foundation and 

side of the column. The experimentally tested repair methodology, however, did not include 

threaded inserts, due to limited space of the half-scale tested column. Rather, chemically anchored 

bars were used and an FRP wrap was provided for additional confinement of the plastic hinge 

region due to the excessive concrete spalling of the undamaged RC column. This connection detail, 

as shown in Figure 2-10b is referred to as the “experimental connection” herein, and incorporates 

a steel collar (Figure 2-10c) that attaches to the chemically, anchored threaded bars. This collar 

then provides a surface to bolt the BRF, energy dissipators, thus simplifying their replacement 

upon failure. The BRFs used in this connection detail are a groove-type dissipator which was found 
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to be successful in resisting large tension and compression intervals. Their design is covered more 

thoroughly in (White, 2014; White and Palermo, 2016). 

 

 

Figure 2-10: (a) Proposed repair connection, (b) experimentally tested repair, and (c) steel collar to connect 

external energy dissipators (White and Palermo 2016). 

 

The experimentally tested repair connection was subjected to reverse, cyclic biaxial 

loadings approximately 8-ft above the foundation. A biaxial drift cycle of 7.8% was achieved 

during testing, however mounting collar sliding was observed at 1.5% drift and at 2.5% drift, 

pullout of the energy dissipators was also observed. Figure 2-11a and 2-11b depict the hysteretic 

performance of the undamaged versus the experimentally tested repair strategy.  

 

 

Figure 2-11: Hysteretic performance of the (a) undamaged connection and (b) the repaired connection (White 

and Palermo 2016). 
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As shown roughly 1%, residual drift remains of the repaired column suggesting that 

achieving a flag-shaped, hysteretic behavior is promising. For future testing, it was concluded that 

additional improvements need to be made to prevent premature slipping and pullout of the collars 

and dissipators (White and Palermo, 2016). 

Chou and Chen (2006) experimentally tested two segmental, CFST bridge columns for 

new-construction, where one excluded energy dissipators (Figure 2-12a) and the other was 

fabricated with external energy dissipators (Figure 2-12b).  

 

 

Figure 2-12: The experimentally tested segmented, CFST bridge columns, fabricated either (a) without 

energy dissipators or (b) with dissipators (Chou and Chen 2006). 

 

Columns consisted of four segmental, 20-inch, diameter CFSTs which were connected via 

a post-tensioned axial duct and were designed to allow for rocking at the foundation interface, and 

first and second segment interface. Two reduced steel plate (RSP) stiffeners were used as energy 
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dissipating devices and included shear studs within the base CFST segment to improve force 

transfer between the RSP stiffeners and internal, CFST concrete. A target drift of 6% was used in 

the displacement history of the tested columns. Results indicate that self-centering effects were 

observed in each tested specimen as well as strength and ductility objectives for each column being 

achieved. The inclusion of external energy dissipators increased the cumulative energy dissipation 

by 20% compared to that of specimen without any dissipaters, demonstrating the successful 

achievement of this performance-based objective (Chou and Chen, 2006). 
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3.0 Analytical Modeling of CFST Columns Under Seismic Loadings 

This chapter gives a detailed description of the numerical modeling procedure performed 

in this study. First, an overview of the numerical modeling procedure of CFST columns is 

presented with a detailed discussion of the non-linear constitutive models and interaction 

definitions that were used. Next, an experimentally tested, reference specimen is introduced, and 

the numerical results developed of the reference specimen are compared to its experimental data 

to provide validation of the modeling approach. Finally, the methodology used to numerically, 

simulate earthquake damage in CFST columns prior to repair is introduced.  

3.1 Numerical Model Overview 

Extensive numerical investigations have been performed previously (Stephens, 2016; Zhu 

et al., 2017) to evaluate the behavior of CFSTs that use the ER connection. In these studies, the 

commercially available, finite element formulation ABAQUS (ABAQUS, 2017) was used to 

perform non-linear analyses. A similar numerical approach using ABAQUS was adopted here.  

The modeled geometry of the CFST specimen, depicted in Figures 3-1a to 3-1c, consisted 

of the steel tube, embedded ring, column concrete, foundation/cap-beam with reinforcing, and 

grout. Steel reinforcement, located in the adjacent concrete element, was modelled using 2-node 

truss elements (T3D2 truss elements) while all other parts utilized 3-dimensional, 8-node, solid 

brick elements with reduced integration (C3D8R elements). As depicted in Figure 3-1b, half-

symmetry along the z-axis was adopted to facilitate computation time. Therefore, the boundary 
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conditions consisted of ABAQUS’ z-symmetry boundary condition as well as a fixed boundary 

constraint applied to the base of the foundation. The loading protocol consisted of a constant axial 

applied at the center of the CFST column with a lateral, displacement loading applied at the top of 

the column.  

To further aid in model efficiency, a varying mesh density approach depicted in Figure 3-

1c was adopted where areas of analytical importance (i.e. the plastic hinge region) had a finer mesh 

density compared to less important regions (i.e. the foundation/cap-beam). A mesh 1 x 1-inch was 

used for the grout, steel, and concrete of the CFST located within the connection pocket. The 

plastic hinge region was assumed to range from the base of the foundation to a maximum height 

of 6-inches, with a failure location at 2-inches above the adjoined concrete element based on 

previous experimental observation. Within this area, the steel and concrete elements were sized 

using a mesh size of 1 x ¼-inches. Above the plastic hinge region, the CFST was divided into 

three, equal sections with increasing mesh sizes along the height; these sizes were 1 x 1-inch, 1 x 

2-inches, and 1 x 3-inches, respectively. The foundation/cap-beam was meshed using 1 x 2-inch 

element to also improve efficiency.  
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Figure 3-1: (a) Typical bridge containing CFST columns with a depiction of the (b) ABAQUS model overview 

and (c) varying mesh densities. 
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3.1.1  Non-linear Material Properties and Interaction Definitions 

Material non-linearity was incorporated using built-in constitutive models in ABAQUS. 

The non-linear behavior of the steel tube was captured using a quad-linear, stress-strain curve 

simplification with isotropic hardening. It was assumed that a stress plateau would initiate at εy 

until the onset of strain hardening, at a strain value of εsh. Strain hardening then propagates until a 

strain value of 3εsh, where a second stress plateau occurs until a stress and strain combination of fu 

and 4εsh respectively. Similarly, the reinforcing steel followed a simplified, tri-linear stress-strain 

curve with strain hardening occurring until failure at an ultimate strain of 4εsh. The stress-strain 

curves of concrete, the steel tube, and steel reinforcing are summarized in Figures 3-2a, 3-2b, and 

3-2c respectively. 

 

 

Figure 3-2: Non-linear stress-strain curves for (a) concrete, (b) the steel tube, and (c) reinforcing steel. 

 

Concrete inelasticity was modeled using a concrete damaged plasticity (CDP) model. The 

CDP model can capture the quasi-brittle nature of concrete, and tensile and compressive stiffness 

reduction under reverse, cyclic loadings (Zhu et al., 2017). To define the CDP constitutive model, 

ABAQUS requires the input of the elastic material parameters, compressive and tensile stress-
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strain data, plasticity parameters (Table 1), and compression and tension damage parameters. The 

elastic modulus was calculated directly from the compressive strength, f’c while a Poisson’s ratio, 

υ, was assumed to be 0.20 for all concrete elements. The compressive stress-strain relation for the 

column concrete, grout, and foundation specimens were defined based on typical compressive 

strength curves provided in Zhu et al. (2017). Tensile, stress-strain curves were developed for each 

concrete part based on the Hsu and Mo (2010) tensile-strain relation, which assumes a linear stress-

strain relation up until cracking stress, fcr, is equal to 7√𝑓𝑐
′ . A softening, stress-strain relation was 

defined using the function provided in (3-1) where εcr is the cracking strain (Hsu and Mo, 2010).  

 

 

 𝑓𝑐𝑟
′ =  𝑓𝑐𝑟 (

ε𝑐𝑟

ε
)

0.4

  (3-1) 

 

 

The plasticity parameters required to define CDP consists of five parameters including: (1) 

dilation angle (2) flow potential eccentricity, (3) compressive strength ratio under biaxial loading 

to uniaxial loading (fb0 / fc0), (4), ratio of the second stress invariant on the tensile meridian to the 

compressive meridian (K), and (5) the viscosity parameter. Values of these plasticity parameters 

implemented here are summarized in Table 1 and were selected based on that previously 

implemented in literature (Zhu et al. 2017) However, the dilation angle varied between concrete 

elements as it predicts the brittle or ductile response under loadings; low values are used for brittle 

responses, while high values predict a more ductile response. The viscosity parameter is widely 

known to have noticeable effects on computational time with a tradeoff in accuracy. This 

parameter allows for a fictitious, concrete tangent stiffness during the softening regime at very 

small, time increments, to facilitate potential convergence issues (Demir et al., 2018; Zhu et al., 

2017). Under monotonic loadings, Zhu et al. (2017) determined that values of 0.001, 0.005, and 
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0.01 were within reasonable accuracies where a model using a value of 0.0001, takes roughly 10 

times longer to converge than a model using a value of 0.001 (Zhu et al., 2017). A value of 0.005 

was used in this study for all CDP model formulations.  

 

Table 1: Plasticity parameters for CDP model. 

Dilation Angle 

Eccentricity fb0 / fc0 K Viscosity Parameter 

Column Concrete Foundation Grout 

20 20 30 0.1 1.16 0.667 0.005 

 

 

Damage parameters, referred to as dc and dt for compressive and tensile damage, 

respectively, are tabulated, non-decreasing, scalar stiffness degradation variables that are a 

function of accumulated concrete cracking or crushing strain values. The degraded, elastic 

stiffness, is depicted as a function of the tensile and compressive damage parameters in Figures 3-

3a and 3-3b, respectively (ABAQUS, 2017; Stephens, 2016; V.Chaudhari and A. Chakrabarti, 

2012; Zhu et al., 2017).  

 

 

Figure 3-3: CDP stress-strain curve response of concrete subjected to uniaxial (a) tension and (b) compression 

(ABAQUS, 2017). 
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The CDP model does have some limitations however, especially when the material is 

subjected to reversed cyclic tension-to-compression cycles. Specifically, the model does not allow 

for crack closure prior to the development of compression resistance, resulting in a hysteretic 

response that does not accurately reflect the response of cracked concrete. This limitation can be 

overcome through the inclusion of the damage parameters (dc and dt) as describe above, however 

computation demand is significantly increased. It has also been noted that the tensile resistance of 

the concrete fill of the CFST, contributes very little to the overall strength of the connection and 

often reaches maximum tensile strength before steel tube yielding occurs (Zhu et al., 2017). To 

improve model efficiency in this study, a “pre-cracking” approach was implemented which 

includes modeling the infill concrete at the location of maximum rotation as two separate parts in 

ABAQUS, with a surface-surface contact described between their interfacial surfaces, denoted by 

Surface 1 and Surface 2 in Figure 3-3. This allows for compressive stresses to still be captured on 

the closing side of the fill, while simplifying the uplift between parts on the tension side (Zhu et 

al., 2017). This methodology was implemented in this study by locating the “pre-crack” at a height 

of 2-inches above the foundation/cap-beam based on prior experimental observation (Stephens, 

2016). 

 

 

Figure 3-4: Depiction of the “pre-crack” approach implemented at the plastic hinge of the CFST column. 
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A series of interaction and constraint definitions were implemented into the numerical 

model for the required parts of the CFST specimen. The interfaces between the steel tube and 

concrete elements (e.g. concrete fill, foundation/cap-beam, or grout) were defined using a contact 

interaction. The two faces of the concrete fill located at the pre-crack was also defined with a 

contact interaction. A contact property with tangential and normal behavior definitions were 

included in the surface-surface interactions; tangential behavior was defined using a penalty 

friction formulation, while the normal behavior was defined as a hard contact. Friction coefficients 

between steel and concrete used a value of 0.35 (Zhu et al., 2017) while a value of 0.80 was used 

between concrete to concrete interactions. 

Tie constraints were used between the grout and foundation/cap-beam parts, and exposed 

base of the infill concrete to the adjoining concrete part. A perfectly embedded constraint was used 

for modeling the embedment of the steel reinforcement into the foundation/cap-beam. The top of 

the column was tied to a reference point using a kinematic constraint with displacement degrees 

of freedom constrained. The axial load and lateral displacement definitions were applied through 

this reference point as well.  

3.2 Numerical Validation with Reference Specimen 

The results from a previous investigation (Stephens, 2016) served as the experimental 

baseline of this study, given its successful hysteretic performance and it exhibiting a ductile failure 

mode with damage isolated into the CFST column, rather than the foundation/cap-beam element. 

The sizing of the reference specimen was determined from a design based on using the Laguna De 

Santa Rosa Bridge near Santa Rosa, California as a prototype. The design procedure consisted of 
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redesigning the 48-inch diameter, RC bridge columns as equivalent ER, CFST columns of the 

same strength. An in-depth design procedure is provided in Stephens (2016). 

The redesign resulted in the reference specimen utilizing a 53-ksi, API 5L X42 PSL1 grade 

steel tube with a 24-inch diameter and a ¼-inch wall thickness (i.e. a D/t ratio of 96). As shown in 

Figure 3-5, the specimen’s height was 72-inches from the top of the foundation, which was sized 

at 76 x 29.75 x 48-inches (L x h x b) and internally reinforced to ensure elastic behavior. The 

height of the column was terminated at the inflection point to simplify its experimental and 

numerical construction. The reference specimen was constructed using the grouted connection 

detail (Figure 2-4) with an embedment length, Le, equal to 20-inches, and specific depth, Lpc, equal 

to 9.75-inches. An inner and outer radius for the ER was taken as 9.75-inches and 14-inches, 

respectively, or a distance of 8t (2-inches) off of the interior and exterior face of the steel tube. The 

foundation included a 30-inch diameter pocket to complete the grouted connection. Specimen 

geometry is summarized in Table 2 while the material strengths, measured on the day of testing, 

are summarized in Table 3.  

The lateral load displacement protocol was based on ATC-24 guidelines (Krawinkler, 

1992) specified for steel structures subjected to seismic loadings, which bases a target 

displacement as a multiple of the initial yield displacement. Peak results indicated that the 

reference specimen slightly exceeded its plastic moment capacity (1.12Mp) of 11,000 k-in as 

determined from the plastic stress distribution method. The peak moment capacity was recorded 

at 4.50% drift and, at 8.6% drift, a 20% moment strength degradation was observed. 
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Figure 3-5: Geometric detailing of the CFST reference specimen. 

 

Table 2: Summary of the reference specimen geometry. 

Dt (in) tt (in) Lf (in) hf (in) bf (in) Lcol (in) Le (in) Lpc (in) 

24 0.25 76 29.75 48 72 20 9.75 

 

Table 3: Summary of the reference specimen material properties. 

Fy,t (ksi) Fu,t (ksi) f’c,col (ksi) f’c,grout (ksi) f’c,f (ksi) 

53 68.9 8.3 8.7 10.1 
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To validate the modeling procedure, a numerical model of the reference specimen was 

created using the procedure outline in Section 3.1. The modeled utilized a simplified, ATC-24 

loading protocol which reduced the number of drift cycles at each target drift. The results of the 

hysteretic performance of the numerical model are compared against the experimental behavior of 

the reference specimen in Figure 3-6. In general, the numerical model captures the behavior of the 

reference specimen. Peak moment capacities at 2, 3 and 5% are similar and the unloading response 

follows very closely to the experimental response. In addition, outward tube buckling of the steel 

tube was still successfully captured as illustrated in Figure 3-7a. The model does over predict initial 

strengths and stiffness, and under predicts strength degradation in the steel tube. This could be 

contributed to the simplified, loading protocol utilized in the model in comparison to that used in 

the experiment.  

 

 

Figure 3-6: Experimental vs numerical response of the reference specimen. 
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3.2.1  Modeling Initial Earthquake Damage 

Damage of a well-detailed, CFST bridge column subjected to a complete, earthquake 

loading history, will experience outward tube buckling failure and eventual tube tearing, as 

depicted in Figure 3-7a. This tube buckling/tearing was accurately captured in the numerical 

model, as shown in Figure 3-7b, and is subsequently removed in order to simulate earthquake-

damage of CFST columns, in ABAQUS models (Figure 3-7c). Based on experimental observation, 

it was assumed that 1-inch of steel above and below the pre-crack location should be removed, 

thus creating two separate parts of the steel tube, above and below the damaged region. 

 

 

Figure 3-7: Typical buckling failure captured (a) experimentally and (b) numerically, and (c) its damage-

simulation in ABAQUS. 
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4.0 Plastic Hinge Relocation Repair Strategy 

This chapter covers the design and a limited numerical parameter study of the plastic hinge 

relocation repair approach. A detailed description of the repair is provided, including an overview 

of the different force transfer mechanisms (FTM) implemented to transfer force from the column 

into the foundation/cap-beam as well as the desired performance. After this, a moment-curvature 

analysis approach used to design the repair is introduced. Finally, a brief description of the 

numerical model and summary of the limited numerical parametric study conducted on the 

different FTMs is provided. The parametric study primarily focused on the influence of the 

different FTM parameters on the lateral load response of the repair, and concludes with a hysteretic 

comparison of the most successful FTM repair design to that of the undamaged, reference 

specimen.  

4.1 Repair Overview 

 In the plastic hinge relocation repair strategy, a CFST pedestal is used to encase the 

damaged region of the original CFST. Steel reinforcement is embedded in the CFST pedestal, and 

is anchored into the adjacent concrete element using epoxy to transfer the applied moment from 

the pedestal into the foundation/cap-beam. The design of this reinforcement and pedestal height is 

covered in more detail in Section 4.2. A steel tube is employed to serve as the formwork for the 

new concrete, and is left in place post-construction, to provide additional confinement to the repair 

infill concrete. Unique to this design compared to conventional RC, enlarged sections, is a suite of 
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force transfer mechanisms (FTMs) that are welded to the CFST to successfully transfer lateral 

forces from the damaged column into the pedestal. In this study, three force transfer mechanism 

were evaluated: (1) a welded ring, (2) conventional shear studs, and (3) weld bead strips. These 

are shown in Figures 4-1a to 4-1c, respectively. The welded ring is similar to the embedded ring 

connection detail, and can be readily welded to the steel tube of the CFST column using a filet 

weld detail. The shear studs proposed for use in this repair are similar to those conventionally used 

in design to transfer forces between steel and concrete, such as in compositive beam structures. 

These can also be readily attached using a shear stud welding gun. The weld bead FTM consist 

simply of a strip of weld that is completed in a single pass by the welder.  

 

 

Figure 4-1: Repair methodologies using (a) welded ring, (b) shear studs,  and (c) weld beads 
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4.1.1  Performance Objectives 

A successful performance of this repair strategy is characterized by shifting the plastic 

hinge location above the pedestal; this would be demonstrated by the full development of the 

plastic moment capacity of the CFST at this region as well. Ductility and stiffness restoration are 

also target objectives for this repair and are assessed by comparing the stiffness and ductility of 

the repaired CFST column, to the undamaged column’s peak behaviors. An additional 

performance objective was to limit rotation within the repair pedestal. This was assessed based on 

a rigid body rotation analysis of the system, where under ideal conditions, lateral displacement of 

the column would be contributed completely from the top of the column to the new plastic hinge 

region. The pedestal would not exhibit any uplift nor any relative rotation to the foundation/cap-

beam. This analysis procedure is covered in more detail in Section 4.4.  

4.2 Design Procedure 

The purpose of this section is to present a design procedure for designing the size and 

dimensions of the CFST pedestal. A similar design procedure is provided in (Krish et al., 2018b) 

for the repair of RC columns. However, in the design procedures provided by Krish et al. (2018a), 

the original, damaged RC column has internal reinforcement which, depending on their damage, 

may still contribute to the overall flexural resistance of the repaired section. This is not true for the 

repair of CFST columns; all flexural resistance in the repaired region is provided by the repair 

pedestal. 
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4.2.1  Estimating Flexural Demand and Pedestal Height 

As previously stated, a main objective of the plastic hinge relocation repair is to develop 

the original plastic moment capacity of the CFST, directly above the repair pedestal. To achieve 

this objective, the plastic moment of the CFST must be developed over a shorter, effective column 

length (L’ = L – h) resulting in a moment which exceeds the plastic moment capacity of the CFST, 

at the base of the pedestal. Therefore, additional strengthening of the foundation/cap-beam may be 

required to prevent foundation failure. (4-1) derives this maximum moment at the base of the 

pedestal (Mr) as a function of the original moment capacity of the CFST (MCFST), the length of the 

column to the inflection point (L), and the new, effective length of the repaired column (L’). This 

derivation is also depicted in Figure 4-2 for clarity. 

 

 

Figure 4-2: Flexural response of the CFST column repair using the plastic hinge relocation method. 
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𝐿

𝐿′
=

𝑀𝑟

𝑀𝐶𝐹𝑆𝑇
  (4-1) 

 

 

The height of the pedestal (hr) must also have adequate height in order to provide sufficient 

concrete to bond to the reinforcement within the repair infill concrete. The American Concrete 

Institute provides design equation, (4-2), below to provide the required height of concrete (Hr) to 

develop the internal reinforcement, assuming normalweight concrete and uncoated reinforcement 

sized greater than or equal to a #7 bar, where fy is yielding stress (psi) of the reinforcement and f’
c 

is the concrete compressive strength (psi)  (American Concrete Institute, 2014). Headed 

reinforcement may also be used to reduce this requirement. Additionally, the required depth of 

anchorage within the foundation/cap-beam should be determined based on the epoxy supplier.  

 

 

 𝐻𝑟 ≥
𝑓𝑦

20√𝑓𝑐
′
(𝑑𝑏) (4-2) 

 

 

There is no direct equation that is available to size the diameter of the repair pedestal, 

however several performance factors are influenced by this dimension. Intuitively, a larger 

diameter would create a larger moment-arm for the internal reinforcement, thereby reducing the 

reinforcing congestion within the pedestal, however there is limitation based on the available 

footprint on the foundation/cap-beam and the increase strain demand on the reinforcing. Though 

not explicitly studied in this investigation, the anticipated strain history of the repair reinforcement 

should be considered; Krist et al. (2018a) provides additional discussions for reference.  
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4.2.2  Estimating Flexural Capacity of the Repair Pedestal 

The cross-section of the repair must be designed to elastically resist the applied moment, 

Mr, calculated in accordance with EQ (2). Two strength calculation methods were evaluated here: 

(1) the strain compatibility method and (2) plastic stress distribution method to compare two 

common moment-curvature analysis procedures. These procedures were elected given that they 

are commonly employed to calculate the plastic moment capacity of columns subjected to 

combined axial and bending loads. The nominal material strengths with overstrength, should be 

used in design as well as confined concrete strengths since the repair infill concrete is confined by 

the exterior steel tube, as adopted from Krish et al. (2018a). It is assumed that the entire concrete 

cross-section, including the concrete within the CFST, provides compressive resistance, and the 

axial load applies a compressive load over the repaired section.  

 

1. Strain compatibility method 

The strain compatibility method is commonly used to calculate the strength of RC columns 

subjected to combined axial and bending loadings, and was therefore adopted for this study. Figure 

4-3 provides an idealized strain distribution of the cross-section assuming a maximum allowable 

concrete strain of 0.003 and a linear strain accumulation from this point. A variable, “c”, is used 

to represent the distance from the extreme concrete compressive fiber to neutral axis and is used 

to calculate curvature and tensile and compressive forces of the cross-section based on their strain 

development. The maximum allowable force of the reinforcement is taken as FyAbar and the 

compressive force within the concrete is taken directly as 0.95f’
cAconcrete, where the area of concrete 

subjected to compression is reduced by the area of reinforcement present in this region. The value 



 46 

of “c” is then iterated on until the combined axial forces are summed to equality, and the resulting 

resisting moment is calculated with respect to the center of the cross-section.  

 

 

Figure 4-3: Idealized stress-strain curves of the strain compatibility method. 

 

2. Plastic stress distribution method 

The plastic stress distribution method has recently been recommended to calculate the 

combined flexural and axial load capacity of CFST columns (Stephens et al., 2016b). The plastic 

stress distribution method assumes that all steel components achieve their yield stress, Fy, across 

the entire cross-section while the internal concrete is assumed to reach a compressive strength of 

0.95f’
c. This relationship is shown in Figure 4-4. Similar, to the strain compatibility method, the 

variable “c” is used to represent the extent of the compressive block and to calculate the area of 

concrete in compression. To simplify calculations, the internal, repair reinforcement is transformed 

to a concentric, thin-walled tube with equivalent reinforcing area of all of the repair pedestal 

reinforcement. This allowed for a simplified calculation of the compressive and tensile resisting 
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area of the repair reinforcement as function of angle, Φ. Using these assumptions, the combined 

forces are summed to equilibrium and the nominal moment capacity is equated with respect to the 

center of the cross-section.  

 

 

Figure 4-4: Idealized stress-strain curves of the plastic stress distribution method. 

 

Using the design methods outlined above, and engineering judgement based from previous 

research ((Krish et al., 2018b; Lehman et al., 2001), a plastic hinge relocation repair was developed 

for the reference specimen. Figure 4-5 provides a reference for the dimensions that depict the repair 

strategy utilized in this investigation, which are also summarized in Table 5. Appendix A1 

provides a detailed procedure for estimating the strength of the repair pedestal, using the two 

moment-curvature design analyses presented in Section 4.2.2. 

 



 48 

 

Figure 4-5: Reference figure for the final design of the plastic hinge relocation repair. 

 

Table 4: Plastic hinge relocation repair geometry. 

Repair Strategy Dr,tube (in) Hr,tube (in) L’
 (in) t (in) 

MCFST 

(k-in) 

Mrepair 

(k-in) 

Dbar (in) Qty 

PHR 36 (1.5D) 24 (1.0D) 48 0.25 11000 16500 9/8 24 

 

4.3 Numerical Model 

The analytical modeling procedure for developing the baseline damaged CFST model in 

ABAQUS uses the methodology presented in Chapter 3.0. To model the plastic hinge relocation 

repair, components of the pedestal were added including, the repair steel tube, the FTMs, and the 

repair reinforcement (extending from the foundation/cap-beam into the pedestal). An overview of 

the model with the pedestal included is provided in Figure 4-6a. All new geometries were modelled 

as separate parts, again using C3D8R elements to model steel and concrete parts and T3D2 

elements to represent the steel reinforcement. The repair concrete used the same concrete damaged 
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plasticity formulation used for the infill, CFST concrete as described in Section 3.1.1, and the 

repair steel tube was assumed to have the same inelastic material properties as the steel tube of the 

column. Repair reinforcement was modeled using nominal strengths accounting for overstrength, 

assuming a tri-linear, stress-strain curve with yielding at 68-ksi and strain hardening up until an 

ultimate strength of 90-ksi. 

The repair concrete was modeled to include a concentric lip to fill the opened, gap where 

the steel tube of the original column was removed to simulate damage. Additionally, a recess was 

included in the repair concrete to provide housing for the weld bead and embedded ring FTMs, 

and to allow for surface-surface interaction definitions. Figure 4-6b depicts the geometry of the 

weld bead repair pedestal, with views of the lip and housing previously described. Due to their 

geometric complexity, a fully embedment constraint was used to simplify the interaction between 

the shear studs and repair concrete, assuming a perfect bond between the two constituents. A fully 

embedment constraint was also used to model the reinforcement bond within the repair concrete 

and foundation/cap-beam, assuming a perfect bond as well. Surface-surface definitions were 

implemented for the all other steel-concrete interactions including that between the repair steel and 

concrete, repair concrete and original steel tube, and the interaction of the top of the 

foundation/cap-beam to the repair pedestal.  

 As shown in Figure 4-6b, a pre-crack approach was placed at the anticipated failure 

location of 2-inches above the pedestal and 1 x 1/4-inch elements were utilized within this region 

to improve computation accuracy. The infill concrete of the original CFST was modeled as three 

separate parts (above the repaired region, within the pedestal, and within the foundation/cap-beam) 

using surface-surface interaction definitions to define the interaction properties between them.  
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Figure 4-6: (a) Numerical overview of the weld bead plastic hinge repair and (b) views of the pedestal. 

4.3.1  Parametric Analysis of the FTMs  

A limited, parametric study was performed to assess the moment-drift performance of the 

three FTMs (depicted in Figures 4-1a to 4-1c). The parametric study focused on modifying the 

dimensions, quantity, and location of components within the FTMs and determining the effect that 

these parameters had on the stiffness and strength of the repair. The geometry and reinforcement 

of the pedestal remained constant for all studies; however, one additional study was performed on 
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the repair tube thickness to evaluate the effect of increasing its thickness. Tables 5 to 7 outline the 

geometry of each repair evaluated in the parametric study. The nomenclature used to refer to the 

FTM is as follows: welded ring (ER), shear studs (SS), and weld beads (WB) with the trailing 

details showing the geometry (8t = 8 times tube thickness) and quantity (x2 = two rows) used in 

the analysis. The extruded length of the welded ring as measured from the face of the original 

CFST was taken as 8t, where t is the tube thickness. Shear stud dimensions were sized from a 

common supplier where it was assumed that 8 total shear studs (per row) would provide adequate 

force transfer. Weld beads were sized for ease of construction as the maximum allowable weld 

size that can be performed in one pass was utilized, as determined from AISC Steel Construction 

Manual (American Society of Civil Engineers, 2011)  

 

Table 5: Summary of ER parameters. 

Name Description Image (pedestal not included) 

ER-8t 

hr = 1/3D = 8-inch 

wr = 8tt = 2-inch 

tr = tt = 1/4- inch 

 

ER-4t 

hr = 1/3D = 8-inch 

wr = 4tt = 1-inch 

tr = 2tt = 1/2-inch 

ER-2x4t 

hr1 = 2/3D = 16-inch 

hr2 = 1/3D = 8-inch 

wr = 4tt = 1-inch 

tr = 2tt = 1/2-inch 
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Table 6: Summary of SS parameters. 

Name Description Image (pedestal not included) 

SS-x2 

hss = 1/3D = 8-inch 

wss = 3-1/8-inch 

ts = 3/4-inch 

th = 1-1/4-inch 

 

S-x4 

hss1 = 2/3D =16-inch 

hss2 = 1/3D = 8-inch 

wss = 3-1/8-inch 

ts = 3/4-inch 

th = 1-1/4-inch 

 

 

Table 7: Summary of WB parameters. 

Name Description Image (pedestal not included) 

WB-x2 
hwb = 1/3D = 8-inch 

wwb = 5/16-inch 

 

WB-x3 

hwb1 = 3/4D = 18-inch 

hwb2 = 1/2D = 12- inch 

hwb3 = 1/4D = 6-inch 

wwb = 5/16-inch 

 

WB-x3-1 

hwb1 = 3/4D = 18-inch 

hwb2 = 1/2D = 12-inch 

hwb3 = 1/4D = 6-inch 

wwb = 5/16-inch 

tt = 3tt = 3/4-inch 
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4.4 Analytical Results 

The performance of each repair was evaluated using a monotonic loading protocol with a 

target drift of 5% measured from the top of the column to the top of the pedestal (L’). The stiffness, 

strength, and contribution of pedestal rotation were used to quantify the performance of the various 

repair geometries. The results for each repair are summarized in Table 8, and a detailed description 

of the behavior of each repair is given in the following sections. Pedestal rotation was evaluated 

to determine the effectiveness of the different FTMs in creating two isolated systems (i.e. the 

pedestal and the original column) where in ideal conditions, the pedestal would remain rigid with 

zero contribution to the overall drift. To evaluate the rotation contributions of the pedestal and 

CFST to the total rotation, the individual displacements were recorded at the top of the pedestal 

and top of the column as indicated in Figure 4-7. The rotation contributions were then determined 

by dividing the rotation of each individual component by the total rotation (θped/θtot and θCFST/θtot 

for the pedestal and CFST respectively). 

 

 
Figure 4-7: Idealized rigid body rotation of the plastic hinge repair strategy. 
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Table 8: Summary of FTM parameteric study 

FTM Name Mmax/Mp,CFST θped/θtot (%) θcfst/θtot (%) 

Welded Ring 

ER-8t 1.06 26.3 73.7 

ER-4t 1.11 24.0 76.0 

ER-2x4t 1.15 20.8 79.2 

Shear Studs 

SS-x2 1.12 25.5 74.5 

SS-x4 1.15 19.6 80.4 

Weld Beads 

WB-x2 1.10 24.5 75.5 

WB-x3 1.22 21.4 78.6 

WB-x3-1 1.21 16.1 83.9 

 

 

1. Welded Ring  

Three, monotonic moment-drift analyses were performed for the welded ring FTM. These 

included, (1) 8t sized ring (extruded from side of original CFST), with thickness t (ER-8t), (2) 4t 

sized ring with thickness, 2t (ER-4t), and (3) two rows of the 4t sized ring with thickness, 2t (ER-

2x4t) as summarized in Figure 4-8a. A moment-drift comparison is shown in Figure 4-8b, while 

the rigid-body rotation analysis results are shown in Figure 4-8c. The peak moment capacity 

normalized to the original plastic moment capacity of CFST, and column/pedestal contributions at 

peak drift are shown in Table 8. Figures 4-9a to 4-9c and Figures 4-10a to 4-10c show comparisons 

of the stress distribution for steel and concrete, respectively. Results are shown at 4% drift for each 

figure for comparison, and concrete stresses are compared to the compressive strength of the 

column (8.3-ksi). 
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Figure 4-8: Deptiction of the (a) overview of ER, FTM repairs, (b) moment-drift response, and (c) rigid-body 

rotation. 

 

 

Figure 4-9: Concrete stress concentration at 4% drift for repair (a) ER-8t, (b) ER-4t, and (c) ER-2x4t. 
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Figure 4-10: Steel stress concentration at 4% drift for repair (a) ER-8t, (b) ER-4t, and (c) ER-2x4t where the 

concrete of the pedestal and CFST are not shown for clarity. 

 

All welded ring repairs achieved strength objectives to exceed the original plastic moment 

of the CFST, however each repair failed to redevelop the original column stiffness. As shown in 

Figures 4-8b and 4-8c, the thickness and projection length of the ring have a significant impact on 

the moment-drift and rigid-body rotation performance. A shorter projection length and thicker 

ring, improves stiffness and strength, as in cases ER-4t and ER-2x4t, due to a less rigid-body 

rotation contribution of the CFST within the pedestal and inelastic deformation of the FTM, as 

compared to ER-8t. Figures 4-9a and 4-10a, highlights this as higher stress concentrations and 

inelastic deformation can be seen around the projected ring compared to Figures 4-9b and 4-9c, 

and Figures 4-10b and 4-10c of the more rigid, welded rings. Furthermore, there is a noticeable 

movement in the location of the compressive concrete stress concentrations in the infill concrete 

from the original damaged region (in ER-8t), to the interface between the top of the pedestal and 

CFST (in ER-2x4t). This is due to a greater pedestal rotation in ER-8t compared to a more isolated, 

CFST rotation above the pedestal in ER-4t and ER-2x4t. Adding an additional row of welded rings 

along the pedestal as for case ER-2x4t, also has noticeable improvement to strength and stiffness 

as force transfer from the CFST to repair pedestal greatly improves when comparing Figures 4-9b 
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and 4-9c. In doing so, this appears to alleviate stress buildup in the original steel tube of the 

column, as there is continuous stress reduction on the tension side of the CFST when moving from 

Figures 4-10a to 4-10c.  

 

2. Shear Studs 

Two monotonic drift analyses were performed for the shear stud repair configuration 

including the use of (1) two rows of shear studs (SS-x2) or (2) four rows of shear studs (SS-x4), 

as shown in Figure 4-11a. Figure 4-11b depicts the moment-drift response and Figure 4-11c results 

of the rigid-body rotation analysis for both configurations. As can be seen in the figures, each 

repair method failed to regain the original stiffness, though strength and ductility objectives were 

achieved. Rigid-body rotation in the pedestal appeared to improve with the addition of two more 

rows at the top of the pedestal. This also improved the stiffness and strength response. Figures 4-

12a and 4-12b, and Figures 4-13a and 4-13b, show the stress accumulation at 4% drift within the 

steel and concrete elements, respectively. 
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Figure 4-11: (a) Overview of the shear stud repair method with depiction of its (b) moment-drift and (b) 

rigid-body rotation response 

 

 

Figure 4-12: Concrete stress concentration at 4% drift for repair (a) SS-x2 and (b) SS-x4. 
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Figure 4-13: Steel stress concentration at 4% drift for repair (a) SS-x2 and (b) SS-x4 where the concrete of 

the pedestal and CFST are not shown for clarity. 

 

The use of shear studs appeared to be a promising option for developing the strength of the 

repair, though additional shear studs are required along the height of the pedestal to fully develop 

stiffness. Furthermore, additional shear studs helped to alleviate concrete stress concentrations at 

their connection interfaces, as illustrated in Figures 4-12a and 4-12b. However, the distribution of 

concrete stress appeared to remain relatively the same along the addition regardless of the number 

of shear studs present. Steel stress within the original CFST was reduced with additional shear 

studs present and greatly improved stress buildup in the shear studs located on the tension side of 

the pedestal, particularly those closest to the foundation. It also appears that the top row of shear 

studs did not exhibit high stress accumulation which may be contributed to a reduction in rotation 

in the pedestal. It should be noted that the deformation of the shear studs, though they are around 

the same projection length as the ER, FTM in ER-8t, did not appear to be significant. This could 

be contributed to the use of an embedment constraint, rather than at surface-surface interaction to 

define the interaction between the shear studs and repair concrete. 
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3. Weld Beads 

Three weld bead configurations were evaluated in this study – (1) two strips of weld beads 

(WB-x2), (2) three strips (WB-x3), and three strips, with a repair tube thickness of 3t (WB-x3-1). 

Figure 4-14a illustrates these three repair methods and Figure 4-14b and 4-14c show the resulting 

moment-drift response and rigid-body rotation response, respectively. For WB-x3 and WB-x3-1, 

strength and stiffness objectives were achieved, where both had a peak moment capacity of 1.20 

M/Mp. WB-x2 however, failed to reach the stiffness and ductility objectives, and performed worse 

in terms of its rigid-body rotation, with a higher rotation contribution from the pedestal. Figures 

4-15a and 4-15b, and 4-16a and 4-16b show the stress distribution of concrete and steel, 

respectively, at approximately 4% drift. Figures 4-15c and 4-16c are shown at the maximum drift 

achieved for WB-x3-1 which is 3.30% drift. 
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Figure 4-14: Depiciton of the (a) overview of the weld bead repair and its (b) moment-drift and (c) rigid-body 

rotation response. 

 

 

Figure 4-15: Concrete stress concentration at 4% drift for repair (a) WB-x2 and (b) WB-x3 and at 3.30% 

drift of (c) WB-x3-1. 
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Figure 4-16: Steel stress concentration at 4% drift for repair (a) WB-x2 and (b) WB-x3 and at 3.30% drift of 

(c) WB-x3-1 where the concrete of the pedestal and CFST are not shown for clarity. 

 

In general, the weld bead repair performed well in restoring the stiffness and strength 

relative to the original CFST. Adding additional weld bead strips along the height of the pedestal 

resulted in a clear increase in strength and stiffness, as well as a reduction in pedestal rotation 

contribution. Figures 4-15b and 4-15c therefore show a greater stress distribution within the repair 

concrete and higher stress concentration within the infill concrete near the top of the pedestal, 

suggesting that a greater quantity of weld beads along pedestal height helps shift plastic 

deformation above the pedestal and reduces rigid-body rotation within the pedestal. There is only 

a marginal reduction in steel stress between Figures 4-16a to 4-16c, however, tube buckling is 

more pronounced at the plastic hinge of WB-x3, compared to WB-x2 most likely due to the 

increase rotation demand in for CFST column above the pedestal.  Interestingly, increasing the 

repair tube thickness in WB-x3-1 appears to have little change in moment-drift and stiffness 

response compared to WB-x3. However, there is a significant improvement WB-x3-1 in reducing 

rigid-body rotation in the pedestal as indicated in Figure 4-14c. This suggests that increasing the 
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repair pedestal’s moment of inertia is also an effective way to isolate rotation to the CFST above 

the pedestal. 

 

4. Comparison of the Repair Configurations 

Four repair configurations were selected to compare the performance of the welded ring, 

shear stud, and weld bead repair configurations: (1) ER-2x4t, (2) SS-x4, (3) WB-x3, and (4) WB-

x3-1. These configurations were selected because they demonstrated the best performance in terms 

of achieving the stiffness and strength objectives. The moment-drift and rigid-body performances 

are compared in Figures 4-17a and 4-17b, respectively. As shown, the weld bead repairs (WB-x3 

and WB-x3-1) were superior in terms of achieving target strength and stiffness objectives. This 

suggests that the overall rigidity of the FTM plays a significant role in repair strength performance 

and force transfer. ER-2x4t and SS-x4 are significantly longer and less rigid than the weld beads 

which ultimately which resulted in higher pedestal rotation contributions and larger inelastic 

deformations of the FTM. It should also be noted that all four repair methods selected for 

comparison in this section used FTMs that were distributed along the height of the pedestal (e.g. 

2 welded rings, 4 shear studs, 3 weld beads) Thus it is recommended that this approach should be 

included in future designs.  
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Figure 4-17: Comparison of the best performing repair methods, depicting the (a) moment-drift and (b) rigid-

body rotiation responses. 

 

5. Hysteretic Performance of Weld Bead Repair 

Based on performance of the weld bead repair (WB-x3) in terms of restoring stiffness and 

strength, a further non-linear, numerical analysis was performed to evaluate the reversed cyclic 

hysteretic response. The repair model was analyzed using a reduced ATC loading protocol 

(Krawinkler, 1992). The moment-drift response is presented in Figure 4-18.  

 

 

Figure 4-18: Hyteretic peformance of WB-x3 compared to the numerical results of the reference specimen. 
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The WB-x3 repair configuration was successful in achieving the strength and stiffness 

capacity of the original, CFST column, very closely matching the same peak moment capacities 

in early stage, drift demands. Strength degradation was not observed until roughly 6.5% drift, 

where a maximum M/Mp ratio of 1.26 was achieved. This equates to 1.89 M/Mp that is induced at 

the base of the pedestal. The theoretical plastic, moment capacity of the pedestal was calculated as 

2.56 M/Mp using the strain compatibility method (SCM), and 2.45 M/Mp using the plastic stress 

distribution method (PSDM). However, yielding was observed within the pedestal reinforcing at 

the pedestal-foundation interface, where a maximum PEEQ strain of 0.007 in/in was recorded. 

This suggests that the two proposed design methods for calculating the required strength of the 

pedestal, underestimate the required strength to prevent yielding of the reinforcement, however 

the reasoning for this needs to be researched further. 

 

6. Pedestal Reinforcement  

As detailed in Chapter 4.2, pedestal reinforcement was designed to elastically resist the 

pedestal-foundation/cap-beam moment demand of the repaired CFST. Results from the parametric 

studies conducted here indicated that the extreme fiber, repair reinforcement in the welded ring 

and shear stud configurations remained elastic. Repair methods that utilized weld beads, however, 

exhibited a different trend. Repair reinforcement within WB-x2 remained elastic throughout 

loading, however repairs WB-x3 and WB-x3-1 exhibited yielding of repair reinforcement at 

approximate drifts of 1.75% and 1.50%, respectively. To characterize this behavior, Figure 4-19 

shows the PEEQ (in/in) versus drift relationship for the most extreme tensile reinforcing in the 

pedestal for weld bead configurations WB-x3 and WB-x3-1.  Note that WB-x3-1 is only presented 

until roughly 3.30% drift due to the model terminating prematurely. The greater strain demand on 
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the pedestal reinforcement in the weld bead repairs is potentially a result of the relatively large 

stiffness and strength of the repair. In the welded ring and SS repair methods, larger inelastic 

deformations developed in the welded ring and shear studs which resulted in a reduction in the 

rotation demand on the pedestal. As a result, this reduced the strain demand of the pedestal 

reinforcement such that yielding was not observed. However, as the rigidity of the FTM improves 

(as was the case for the weld bead repairs), the embedded CFST is more constrained by the repair 

pedestal, and imparts a larger moment into the pedestal that is resisted by the pedestal reinforcing.  

 

 

Figure 4-19: PEEQ vs %Drift of WB-x3 and WB-x3-1 repair methods of extreme fiber reinforcing in 

pedestal. 
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5.0 Performance-Based Repair Strategy 

This chapter covers the design and a limited numerical study of a performance-based repair 

strategy that incorporates bolted and replaceable external energy dissipators for resistance. First, a 

detailed description of the repair configuration is provided, including the components of the repair, 

the performance-based objectives, and design methodology. Then a description of the energy 

dissipator is provided, as well as a proposed design methodology for an individual energy 

dissipator. Next, an experimental investigation into the performance of the proposed energy 

dissipator, including the experimental methodology and results of cyclic-compression loading 

protocol are discussed. Then finally, the numerical methodology to evaluate the global response 

of the performance-based repair and results from the study are presented.   

5.1 Performance-Based Repair Strategy Overview 

The performance-based repair strategy uses replaceable external, energy dissipators that 

are field-bolted to a CFST pedestal which encases the damage region of the original, CFST column 

as illustrated in Figure 5-1. The use of three rows of weld beads was selected to serve as the force 

transfer mechanism between the original CFST column and repair pedestal, given the success of 

this configuration as demonstrated in Chapter 4.0. The repair concrete fill in the pedestal provides 

concrete confinement of the exposed, damaged concrete of the CFST column. In addition, the 

repair pedestal includes a welded, annular steel plate located at the pedestal-foundation/cap-beam 

interface, thus isolating the damaged, CFST from the foundation, and allowing for column-rocking 
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along the damaged region. The repair configuration eliminates the need for reinforcement 

extending from the foundation/cap-beam into the repair pedestal, as load is transferred from the 

pedestal to the foundation via the external, energy dissipators which are epoxied into foundation. 

To facilitate replacement, the dissipators are bolted to a steel flange that is welded at the top of the 

repair. Due to the high concentrated forces at the connection points, the flange is stiffened using 

steel plates that are welded between the underside of the flange and exterior of the steel tube. One 

main impetus for using energy dissipators as the sole source for moment resistance is that it allows 

the designer to tune the structure to a desired strength and stiffness objective by means of adjusting 

the quantity or size of the dissipators. A further description of the type of energy dissipator that is 

utilized in this investigation called the BRBar, is provided in Section 5.3. 

 

 

Figure 5-1: Peformance-based repair using external energy dissipators and column-rocking. 

 

The idealized column-rocking behavior is shown in Figure 5-2. Due to column-rocking at 

the base of the pedestal, the effective CFST length (L’) and the pedestal (H), will ideally rotate as 

a rigid system. As a result, plastic hinging and subsequent outward, tube buckling would not be 
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observed above the pedestal, and inelastic behavior is controlled to only occur in the external, 

energy dissipators, allowing for rapid-replacement of the dissipators post-earthquake to return the 

structure to service. This differs from the plastic hinge relocation repair, where the pedestal and 

effective CFST, operate as two isolated systems, with ideally no pedestal rotation.  

 

 

Figure 5-2: Idealized rigid-body rotation of the peformance-based repair. 

 

5.2 Design of the Performance-Based Repair 

The following section outlines a design strategy for the performance-based repair method 

to design for strength of the global repair strategy (i.e. the entire BRBar-repair pedestal system).  

Recommendations are provided for estimating the repair’s flexural strength, and for sizing the 

repair pedestal. A further discussion on designing the BRBar on the subcomponent level, is 

provided in Section 5.3.1. 

The design strategy of the performance-based repair method requires unique design 

considerations due to the presence of column-rocking at the base of the pedestal and the 
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replaceable energy dissipators outside the footprint of the pedestal. Since rotation of the CFST 

occurs along the damaged section, the only moment being transferred into the foundation/cap-

beam is from the compression of the pedestal coupled with the tension from the dissipators. Thus, 

the moment strength of the connection can be explicitly selected by the designer. To achieve 

flexural capacity, the designer can manipulate either the size or the quantity of BRBars. However, 

there are some tradeoffs between these two options. For example, a larger quantity of energy 

dissipators would likely be more labor intensive and would require a larger footprint, that may not 

be available for construction, as well as additional fabrication work to manufacture the flange of 

the repair steel tube to accommodate for the dissipators. However, with smaller BRBars, the 

required anchorage depth into the adjoining, concrete element would be shorter and may reduce 

the likelihood of interfering with internal reinforcement. The manufacture and labor requirement 

would likely decrease with larger BRBars; however, their larger embedded section would increase 

the required anchorage depth, thus likely increasing the chance of interfering with existing 

foundation/cap-beam reinforcement.  

In addition, since pedestal reinforcement is not required, the pedestal height (Hr.tube) is no 

longer a function of the required height to develop the repair reinforcement. Instead, its minimum 

required height is primarily a function of the required height to fit the BRBar assembly.  

To design the strength of the performance-based repair, a similar moment-curvature 

analysis presented in Section 4.2 (e.g. strain compatibility and plastic stress distribution methods) 

can be implemented, under the assumption that the performance-based repair cross-section, 

behaves as a reinforced concrete section, with reinforcement (the BRBar energy dissipators), 

located outside the footprint of the pedestal. The idealized stress-strain, equilibrium diagrams are 
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presented in Figure 5-3 and 5-4 for the strain compatibility method, and plastic stress distribution 

method, respectively. 

 

 

Figure 5-3: Strain compatability method idealized equilibrium diagram. 

 

 

Figure 5-4: Idealized plastic stress distriubtion method equilibrium diagram. 

 

There are several key differences between the plastic hinge relocation repair and 

performance-based repair design methods that need to be considered. First, because the BRBars 

operate outside of the pedestal, the area of concrete in compression does not need to be reduced 

by the area of the bars within that area. Next, the confining tube on the pedestal is assumed to only 
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provide compressive resistance; its tension resistance is neglected due to the rocking mechanism. 

To facilitate design calculations, the BRBars can be transformed into an equivalent concentric, 

thin-walled tube, similar to the procedure described in Chapter 4.2, and area calculations can be 

calculated using the typical angle, Φ, shown in Figure 5-4. This approach is only adopted for the 

plastic stress distribution method. It should also be noted that the strain compatibility method was 

selected based on its ability to estimate the capacity of RC structures subjected to axial and bending 

loadings, however, since the BRBars operate outside of the concrete, it is likely that this method 

will not perform well.  

5.3 Buckling Restrained Reinforcing Bar (BRBar) 

The performance-based repair strategy utilizes a buckling restrained, reinforcing bar fuse 

(BRBar) as the replaceable external energy dissipator. The BRBar is designed using concepts 

commonly implemented in large scale, buckling restrained braces used in buildings in seismic 

regions (Bruneau et al., 2011). Figure 5-5 shows a cross-section of the BRBar, depicting a larger 

bars couple with LENTON transition couplers, to a smaller bar that is restrained from buckling; 

the smaller bar acts as the structural fuse, while the larger bars are designed to remain elastic 

(White, 2014). Readily available, steel reinforcing bars are used both as the restrained structural 

fuse and the larger non-yielding section that extends into the concrete element. The other end of 

the BRBar utilizes a larger section of non-yielding, all-thread bar which provides a threaded bolted 

connection to the steel flange of the repair steel tube. 
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Figure 5-5: Depiciton of the BRBar energy dissipator. 

 

A buckling restraining mechanism (BRM) surrounds the yielding fuse to prevent buckling 

before compressive, yielding can develop. The BRM consists of a hollow, thin-walled steel tube 

with an internal, PVC tube that is epoxied to its interior face to serve as the debonding agent to 

prevent longitudinal force transfer between the yielding fuse and BRM. To connect the BRM to 

the bar-coupler system, a series of set screws are threaded through the bottom of steel tube of the 

BRM into the adjacent coupler. This has three purposes: (1) to center all the components of the 

BRBar, (2) to allow for the yielding bar to freely deform within the BRM, without transferring 

forces between the two elements, and (3) to allow the internal, yielding fuse to easily be replaced 

post-earthquake since the BRM and fuse are connected using removable screws, thus eliminating 

the need to replace the entire BRBar system,  
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5.3.1  Subcomponent Design of the BRBar 

The ductility design of each individual, BRBar is based on the expected strain history of a 

BRBar placed at the location of extreme tensile and compressive resistance. The expected 

maximum strain of the yielding bar can be calculated as a function of the target drift (θ) using a 

rigid-body analysis as depicted in Figure 5-6. In this analysis, it is assumed the pedestal rotates 

about the interior edge of the steel tube of the original CFST column, referenced as Point R, in 

Figure 5-6. It should be noted that this rotation point is along the damaged region, not along the 

foundation/cap-beam level. The distance Xten. is the distance from Point R to the centroid of the 

extreme tension resisting, BRBar, while Xcomp is the distance to the extreme compressive resisting, 

BRBar. At any given drift demand, an angle (θ) is used to designate the subsequent rotation 

demand of the BRBar, or the angle between the point of rotation (Point R) and the point of 

deformation of the BRBar. Using trigonometry, the angle (θ) is equivalent to the inverse tangent 

of the drift of the column (θ). At a given column drift (θ), (5-1) provides a generalized, deformation 

equation, derived to calculate the theoretical, deformation demand (ΔBRBar) of either the extreme 

tension or compression BRBar for cases of X equal to Xten. or Xcomp., respectively. To calculate the 

maximum deformation, column drift (θ) is substituted with the maximum, target column drift 

(θmax). 
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Figure 5-6: Idealized deformation demand of the BRBar at a given column-drift. 

 

 

 ∆𝐵𝑅𝐵𝑎𝑟=  𝑥 tan(
θ 

100
) (5-1) 

 

 

The required length of the yielding fuse (Lfuse) is determined from the expected deformation 

demand (ΔBRBar) due to tension, as calculated using (5-2) where (εd) represents the maximum 

desirable strain demand of the fuse. For this investigation, a value of 0.15-inch/inch was taken as 

the maximum strain demand of the rebar fuse.   

 

 

 𝐿𝑓𝑢𝑠𝑒 =  
Δ𝑑,𝐵𝑅𝐵𝑎𝑟

ε𝑑
  (5-2) 

 

 

The buckling restraining mechanism (BRM), which consists of a steel tube with an internal 

PVC pipe, grouted to the wall of the tube, is designed to resist global buckling of the BRBar system 

under compressive loadings. Bruneau et al. (2011) suggests that the BRMs of buckling restrained 

braces should be designed to resist a Euler buckling load (Pe) of 1.5Py, where Py is the yielding 
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load of the fuse. Given the uncertainty of the expected behavior of the BRBar, a value of 2.0Py 

was conservatively chosen for all BRBars evaluated here. It is also recommended to ignore the 

contribution of internal fill between the outside tube and fuse. Therefore, the moment of inertia of 

the steel tube (Itube) required to restrain buckling can be directly calculated using the Euler 

Buckling equation (5-3), assuming that the length of the tube (Ltube) extends from the top to the 

bottom of the transition couplers. In addition to meeting this requirement, the restraining steel tube 

must also be sized to fit the transition couplers. In determining the required transition couplers, a 

diameter size of two-times the diameter of the yielding fuse should be used for the non-yielding 

elements within the BRBar assembly. 

 

 

 𝐼𝑡𝑢𝑏𝑒 =  
𝑃𝑒𝐿𝑡𝑢𝑏𝑒

2

𝐸𝜋2 =  
2.0𝑃𝑦𝐿𝑡𝑢𝑏𝑒

2

𝐸𝜋2  (5-3) 

5.4 Experimental Program for the BRBar Subcomponent 

A limited experimental study was performed to evaluate the performance of the BRBar. 

The experimental procedure of the BRBar subcomponent consisted of testing two different sized 

BRBars (a #6 and #7, sized yielding core) under a cyclic, compression loading protocol. These 

will be referred to as BRBar#6 and BRBar#7, respectively herein. Two unbraced, reinforcing bars 

equal to the total length of the BRBars and sized at either a #6 and #7 diameter, were also tested 

to provide a baseline performance for comparison. These are herein referred to as Unbraced#6 and 

Unbraced#7, respectively. For BRBar specimens, the yielding cores were coupled to #8 rebar on 

one end, and a 1-inch diameter all-thread on the other. All other dimensions (e.g. core length, 

transition bar lengths, BRM length and size) were consistent between the two specimens, besides 
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the LENTON transition couplers required for the #6-to-#8 and #7-to-#8 transitions. An overview 

of the BRBar specimen is summarized in Figure 5-7.  

 

 

Figure 5-7: (a) Tested BRBar subcomponent with the (b) dimensions of each of its parts. 

5.4.1  Fabrication of Specimens and Experimental Setup 

The BRBar specimens were primarily fabricated in the University of Pittsburgh Structural 

Lab. The core and non-yielding bars were cut to length, and the ends were threaded for the 
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transition couplers. The steel tube of the BRM was also cut to length, and two rows of four holes 

located in each quadrant were drilled and threaded for the set screws. Note that threading for the 

couplers had to completed offsite using proprietary machinery at the LENTON coupler distributor.  

After the reinforcing and all steel components were threaded and cut to size, the internal 

PVC pipe was grouted into place. Threaded plugs, shown in Figure 5-8a, were built to ensure that 

the PVC pipe remained concentric and at midspan of the steel tube during grouting (Figure 5-8b). 

The bottom plug was machined to the same diameter as the internal diameter of the steel tube to 

prevent any leakage of grout during casting, while the top plug was sized as the outside diameter 

of the PVC to prevent grout from entering inside the PVC. Both plugs were machined with a small 

lip at their ends that was equal to the internal diameter of the PVC to provide a tight fit which 

prevented leakage. A threaded rod, threaded into the bottom plug, was used to stabilize the BRM 

during grouting, and provided a way to remove the bottom plug after the grout had set. The latter 

process is depicted in Figure 5-8c. The bottom end of the steel tube was capped using a nut and 

washer screwed onto the exposed threaded rod, as shown in Figure 5-8c. Then, as the nut is 

tightened, the plug can be slowly pulled out of the PVC pipe and steel tube, leaving the grouted 

PVC in place. The top plug can then easily be punched out since only the lip is holding it into 

place. 
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Figure 5-8: (a) Internal plugs for (b) pouring the BRM’s grout, and (c) removing them after curing. 

 

The BRBar specimens and unbraced baseline specimens were tested using a hydraulic, 

Universal Testing Machine (UTM) in the University of Pittsburgh Structures Laboratory. The 

testing apparatus, shown in Figure 5-9a, consisted of steel base plates with 1-inch diameter holes, 

bolted into the top and bottom of the UTM using set screws. The BRBar were fixed into the UTM 

during testing, by placing the specimens within the concentric holes of the base plates as depicted 

by the details of Figure 5-9a.  

The compression loading protocol for the BRBars and unbraced specimens, shown in 

Figure 5-9b and 5-9c, respectively, were developed using (5-1) and were carried out under a 

displacement-controlled loading procedure, by converting the target strain to target displacement 

using the core length for the BRBar, or total specimen length for the unbraced bars.  Due to the 

point of rocking being closer to the compression side than tension, as shown in Figure 5-6, an 

asymmetric displacement demand is subjected to the BRBar components, where the relationship 

between the tensile or compressive displacement of the BRBar at given drift demand is given by 
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the ratio of Xten. / Xcomp. A small axial load of around 1-kip was placed first on the tested specimen 

before testing to remove any slack in the system.  

 

 

Figure 5-9: (a) The experimental testing apparatus and displacement-controlled loading protocols for the (b) 

BRBars and (c) unbraced speciemens. 
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Displacement and force were measured directly from the UTM using its internal position 

transducer and load cell. Strain measurements were captured using YFLA-5-3LJC-F strain gauges 

that were placed on the steel tube of the BRM and yielding core. For the steel tube, one strain 

gauge was oriented longitudinally to capture axial strain while the other was placed transversely 

to capture hoop strain. This was done to assess demands on the steel tube restraining mechanism. 

One strain gauge was placed longitudinally along the northern (N) face and another strain gauge 

was placed longitudinally along the western (W) face of the yielding core. All measurements were 

gathered using a National Instruments, Compact Data Acquisition (DAQ) system.   

5.4.2  Results and Discussion 

BRBar#6 Specimen 

Figures 5-10a and 5-10b, show the loading response of Unbraced#6 and BRBar#6. During 

testing of BRBar#6, a local instability occurred in the rebar-coupler system due to the presence of 

the 1/16-inch gap between the top coupler and steel restraining tube. This resulted in the BRM 

insufficiently restraining the lateral movement of the BRBar, and as loading progressed, local 

buckling occurred directly below the top coupler in the yielding fuse. The inherent eccentricity of 

the testing apparatus may also have further exacerbated this response as well.  

However, the BRM was able to restrain further lateral movement once contact was 

initiated, thus significantly improving the compressive capacity of the BRBar where a maximum 

force of 1.04Fy was observed during testing. Successful yielding of the BRBar fuse was further 

confirmed by observing the measured force vs measured strain response of the northern (N) and 

western (W) strain gauges, as depicted in Figures 5-11a and 5-11b, respectively. In both figures, 

the theoretical yield (εy = 0.002 in/in) was surpassed for the yielding core, with slight residual, 
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inelastic strain being observed in both strain gauges. Limited strain was observed within the steel 

restraining tube, as shown in Figures 5-12a and 5-12b which plot the longitudinal and hoop strain 

versus force responses, respectively. A maximum longitudinal and hoop strain of 0.000041 in/in 

and 0.000016 in/in were recorded, respectively, suggesting very marginal stress stresses developed 

in the steel tube. However, strain gauges were placed at mid-span and a larger strain response 

would be expected to have occurred near the top of the BRM, where the coupler was bearing 

against the steel tube, though no permanent deformations of the steel tube were visually 

identifiable after testing. 

 

 

Figure 5-10: (a) Unbraced#6 deformation response compared to (b) BRBar#6. 
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Figure 5-11: Force vs strain responses recorded by the (a) Northern and (b) Western strain gauges on the 

yielding core. 

 

 

Figure 5-12: Force vs strain responses recorded by the (a) hoop strain and (b) longitudinal strain gauges on 

the steel tube of the BRM. 
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Figure 5-13 shows the force versus theoretical strain (i.e. strain calculated in (5-1)) plots 

of the BRBar#6 and Unbraced#6 specimens. The theoretical yielding force (Py) of the yielding 

core and Euler Buckling load (Pe) of Unbraced#6 are also plotted for reference. It should be noted 

that the BRBar#6 was not loaded to an initial, axial load of 1-kip before testing which resulted in 

the low initial stiffness shown in Figure 5-13, compared relative to Unbraced#6 which was 

preloaded to 1-kip to remove all slack within the system. Testing showed that Unbraced#6 reached 

a maximum axial load of 0.32Fy, before the initiation of buckling and significant strength 

degradation were observed. In addition, the side-by-side comparison of the deformed shapes in the 

BRBar#6 and Unbraced#6, shown in Figures 5-10a and 5-10b, demonstrates that the buckling 

restraint is effective in decreasing overall out of plane displacement, even when the coupler isn’t 

fully supported by the buckling restraint tube. 

 

 

Figure 5-13: Theoretical strain (in/in) vs force (kip) response of BRBar#6 and Unbraced#6. 
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Figures 5-14a and 5-14b show the final deformed shape of the BRBar after testing 

concluded. The lateral displacement of the top non-yielding bar and coupler is clearly shown to 

have occurred within the BRM. When removing the BRM, it can be seen that buckling occurred 

slightly below the coupler, in the reduced section of the yielding core, while bars below this point 

remained mostly unaffected. This test demonstrated the importance of fully restraining the rebar-

coupler system and removing any gaps between the steel tube and couplers, which otherwise 

reduce the compressive capacity of the BRBar.  

 

 

Figure 5-14: The (a) idealized buckling profile of BRBar#6 and (b) experimental buckling profile. 

 



 86 

BRBar#7 Specimen 

Due to the local instability that was observed in testing BRBar #6 which resulted from the 

1/16-inch gap between the coupler and steel tube, steel bushing was fabricated for BRBar#7 to 

remove the gap, and provide continuous restraint to the coupler during testing. The bushings are 

depicted in Figure 5-15a, and Figure 5-15b shows their location in BRBar#7. The bushings were 

machined such that they fit between the exact width of the opening, while still not restricting 

longitudinal displacement of the yielding core.  

 

 

Figure 5-15: (a) Bushing machined to be placed (b) between coupler and BRM to reduce lateral displacement. 

 

Lateral displacement of the coupler was able to be reduced by including bushings, and 

ultimately improved the compressive response of BRBar#7, where a maximum compressive force 

resistance of 1.12Fy was recorded. Near the end of testing, noticeable buckling of the top, non-
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yielding bar was observed due to its length and potential eccentric loadings within the UTM. This 

buckling response is shown in Figure 5-16. To overcome this, testing was prematurely stopped 

and the top, #8 threaded, non-yielding bar was replaced with the #8, non-yielding rebar used during 

the testing of BRBar#6. Testing resumed until stopping due to excessive buckling of both ends of 

non-yielding bars, as shown in Figure 5-17a and 5-17b, which depict the final deformed shape at 

peak loads for Unbraced#7 and BRBar#7, respectively. Yielding of the rebar core is further 

demonstrated by observing the force vs measured strain responses of the northern (N) and western 

(W) strain gauges of the yielding bar, shown in Figures 5-18a and 5-18b, respectively. Peak strain 

values of 9.0εy and 3.4εy were recorded in the northern and western strain gauges, respectively, 

before testing was terminated. Clear strain yielding and residual strain is captured in both strain 

gauges, further demonstrating the success of the BRBar to achieve yielding under compressive 

loading demands. Figures 5-19a and 5-19b, depict the axial and hoop strain response of the steel 

tube as a function of measured force. It can be seen that marginal strain development occurred in 

the steel tube, though again these values were recorded at the mid-depth of the tube and may 

otherwise be larger at the either end of the tube where extreme deformations occurred. 
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Figure 5-16: Depiction of the buckling of the top, non-yielding bar which was replaced during testing. 

 

 

Figure 5-17: Final deformed shape of (a) Unbraced#7 and (b) BRBar#7. 
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Figure 5-18: Force vs strain responses recorded by the (a) Northern and (b) Western strain gauges on the 

yielding core. 

 

 

Figure 5-19: Force vs strain responses recorded by the (a) hoop and (b) longitudinal strain gauges on the steel 

tube of the BRM. 
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Figure 5-20 shows the resulting force vs theoretical strain (i.e. strain calculated from (5-

1)) response of BRBar#7 in comparison to Unbraced#7, with references to the theoretical yield of 

the fuse (Py) and Euler Buckling capacity of Unbraced#7 (Pe). In this test, both BRBar#7 and 

Unbraced#7 were preloaded to approximately 1.0-kips, thus resulting in comparable, initial 

stiffness responses. In comparison to the BRBar#7, Unbraced#7 only achieved a maximum force 

response of 0.33Fy, before significant strength reduction occurred due to buckling. This strength 

response, and the final deformed shape of the tested specimens shown in Figure 5-17a and 5-17b, 

demonstrate the ability of the bushings and BRMs to achieve yielding of the core and prevent 

extreme lateral deflections under compressive loadings. The final deformed shape of BRBar#7 is 

shown below in Figure 5-21a and 5-21b. As shown, a more dominant, S-Shaped buckling profile 

is observed in this specimen due to the buckling of the top and bottom, non-yielding bars above 

the coupler.  

 

 

Figure 5-20: Force vs theoretical strain of BRBar#7 and Unbraced#7 
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Figure 5-21: The (a) idealized buckling profile of BRBar#7 and (b) experimental buckling profile. 

5.4.3  General Comments and Recommendation 

From this limited experimental study of the BRBars, several key recommendations can be 

made that should be followed in future experimental studies. 

1. Minimize gaps between the steel tube of the BRM and couplers in order to prevent any 

local instabilities (Figure 5-10b). Testing here demonstrated that steel bushing (Figure 5-

15a and 5-15b) can successfully eliminate instabilities and prevent lateral deflections of 

the coupler during testing. 
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2. Preload the BRBar to approximately 1-kip in order to reduce any inherent slack in the 

specimen, otherwise a low stiffness response will be observed during initial loadings 

(Figure 5-13). 

3. Minimize the length of the non-yielding bars to prevent premature buckling during testing 

(Figure 5-17b). It is also recommended that a minimum diameter of two-times the yielding 

bar should be used for the non-yielding bars to further reduce the likelihood of buckling 

during testing, and in the field. 

5.5 Numerical Modeling of Performance-Based Repair 

The analytical modeling procedure for developing the baseline damaged CFST model in 

ABAQUS uses the methodology presented in Chapter 3. To model the performance-based repair, 

components of the repair were added including: the repair pedestal (including the concrete, steel 

tube, baseplate and flange), the BRBar energy dissipator, and the connections between the BRBar 

and the flange and foundation.  

The repair steel tube and concrete in the pedestal were modeled using the same inelastic 

material and element properties described in Chapter 4. However, in the performance-based repair 

model, there is no steel reinforcing included in the pedestal. The pedestal required the addition of 

the flange, flange stiffeners, and base plate. The base plate was assumed to be the same thickness 

as the steel tube, while the flange was modeled as twice its thickness and projecting 3-inches off 

the edge of the steel tube. The flange stiffeners were modeled to be 1-inch thick, with a depth of 

4-inches and width spanning from the edge of the flange to outside face of the repair steel tube. 

All of these features were modeled as the same part within ABAQUS, rather than creating disparate 
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parts and using a tie constraint to develop the geometry. It was also assumed that each feature had 

the same inelastic material properties as the steel tube of the CFST column.  

Sizing of these repair components were based on the design methods, and experimental 

evidence provided previously, and are summarized in Table 9. An overview of the model is shown 

in Figure 5-22a to 5-22b for reference, and a more detailed calculation procedure is provided in 

Appendix A2. 

 

Table 9: Design results of the performance-based repair for numerical investigation. 

Repair Strategy Dr (in) Hr (in) Lcore (in) Xten. (in) Xcomp. (in) Mr (k-in) Dfuse (in) Qty 

PB - BRBars 36 (1.5D) 24 (1.0D) 15 31.125  7.625 11000 7/8 8 

 

 

Figure 5-22: (a) Overview of the performance-based repair model and a (b) detail of the pedestal. 
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As shown in Figure 5-22b, a pre-crack was not included above the repair pedestal because 

it was expected that column-rocking would dominate response, eliminating the development of a 

plastic hinge above the pedestal. Therefore, the infill concrete of the CFST was modeled only as 

two separate parts; similar to the procedure outline in Chapter 3. However, the region above the 

repair pedestal was meshed with a higher density of elements due to the likelihood of high stress 

concentrations as shown in Figure 5-22b. The same interaction definitions presented in Section 4.3 

were used to describe the interaction between the steel tube and concrete in the pedestal. In 

addition, a surface-surface interaction was defined between the interface of the base plate and 

foundation/cap-beam and between the repair base plate and steel tube, with steel-concrete and 

steel-steel property definitions respectively. 

5.5.1  BRBar Model 

The BRBar subcomponent was modeled as five separate parts: (1) the yielding bar, (2) the 

top non-yielding bar, (3) the bottom non-yielding bar, (4) the infill grout of the BRM, and (5) the 

steel tube of the BRM. The overall depiction of the modeled BRBar is shown in Figure 5-23 with 

the element density composition shown in Figure 5-23a. Two model geometries were developed 

for the BRBar component: one geometry that included a small gap (approximately 1/16-in) 

between the internal grout and the yielding bar, and another geometry where this gap was removed, 

which are referred to as BRBar-Gap and BRBar-NoGap, respectively. The geometries of the Gap 

and NoGap BRBar models are shown in Figures 5-23b and 5-23c, respectively. The yielding, and 

non-yielding bars were modelled using the same inelastic material properties of steel reinforcing 

with yielding at 68-ksi, followed by a small stress plateau and strain hardening to failure at 90-ksi. 

The transition couplers were modeled simply as cylinders with equal diameters of those provided 
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by the manufacturer. The top, non-yielding bar was also modeled with two steel washers, that 

clamped to the flange to simulate the connection of the BRBar repair pedestal as shown in Figure 

23b and 23c. The steel tube and grout of the BRM were simulated as simple thin-walled, concentric 

tubes. The steel tube had the same inelastic property definitions as the steel tube of the CFST 

column while the grout had the same properties as the grout of the CFST, embedded connection. 

A small, ½-inch gap was provided between the couplers and grout to allow for deformation of the 

yielding bar, without the coupler contacting the BRM. Half-symmetry models were used for the 

BRBars along the symmetry line of the original column; all other BRBars were modeled using the 

full geometry. All components of the BRBar were modeled using C3D8R elements with reduced 

integration, meshed with approximately a 0.20-inch mesh density. 

A surface-surface interaction was defined between the two, washers of the BRBar to the 

flange of the repair steel tube, to simulate a clamped, bolted connection. A surface-surface 

interaction was also used between the steel tube and top coupler interface; this property definition 

did not include tangential properties to allow for undisturbed, sliding as the yielding core deforms. 

The BRM’s grout utilized a surface-surface interaction to capture the interaction between the grout 

and yielding bar. The BRBar-NoGap model excluded tangential properties as well to simulate a 

decoupling mechanism, and allow for relative deformation between the two parts without 

developing friction forces. The base of BRBar, which included the bottom of the steel tube and 

coupler, also included a surface-surface interaction to the top of the foundation/cap-beam.  

The yielding and non-yielding bars were spatially assembled, and tied together using a tie 

constraint. The interior face of the steel restraining tube was tied to the bottom coupler to model 

the set screw connection. The steel tube and infill grout of the BRM were also connected using the 

tie constraint assuming perfect bond between the grout and restraining tube. The bottom, non-
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yielding bar that projected into the foundation/cap-beam was assumed to be perfectly embedded 

using a fully embedded constraint.  

 

Figure 5-23: Depticiton of (a) the tpyical mesh density of (b) the NoGap and (c) Gap model cases 

5.6 Results and Discussion of the Global Repair Response 

The performance of the performance-based repair was evaluated for both monotonic and 

cyclic loading. The monotonic case was run to a maximum target rotation of 8%. Two cyclic 

protocols were used; one with a single cycle to a maximum target rotation of 5.5% (herein referred 

to as single-cycle loading), and one using the reduced ATC protocol discussed in Section 4.4. A 

summary of the numerical results is shown in Table 10 below, where gap and no gap refer to the 



 97 

BRBar. The response of the performance-based repair was compared to the response of the 

undamaged CFST column to assess the strength and ductility recovery of the repair. In addition, a 

rotation contribution analysis, was also performed using the results from the monotonic loading 

response to analyze the relative CFST and pedestal rotation contributions. This was done to assess 

the ability of the repair to successfully induce column-rocking, where the objective is to minimize 

rotation in the CFST column above the pedestal. The following sections provide a detailed 

discussion of the hysteretic response of the performance-based repair using the gap and no gap 

BRBars.  

 

Table 10: Summary of peak responses from numerical analysis of the performance-based repair. 

Model 

Loading 

Regime 

Strength 

(Mr/Mp) 

Max Drift 

(%) 
Ped. Rotation 

(%) * 

CFST 

Rotation (%) * 

(+) (-) (+) (-) 

Gap 

Monotonic 
1.05 N/A 10.5 N/A 3.40 3.15 

Single-Cycle 0.99 1.05 5.50 5.50 N/A N/A 

Hysteretic 1.00 1.10 4.85 4.00 N/A N/A 

NoGap 

Monotonic 1.01 N/A 10.5 N/A 96.6 96.85 

Single-Cycle 0.98 1.06 5.50 5.50 N/A N/A 

Hysteretic 1.02 1.02 4.83 3.65 N/A N/A 

* Values given at maximum drift of monotonic loading protocol 
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1. BRBar-Gap 

The moment-drift responses for the monotonic, single-cycle, and hysteretic loading cases 

are shown in Figure 5-24, along with the hysteretic response of the undamaged column. The rigid 

body rotation analysis is shown in Figure 25. In addition, the peak moment capacities and rotation 

contributions at failure of the monotonic response are provided in Table 10. Results show that the 

performance-based repair configuration with the BRBar-Gap model is able to restore the original 

moment capacity, with peak moment resistance ratios (Mr/Mp) of 1.05, 0.99, and 1.00 for the 

monotonic, single-cycle, and hysteretic load regimes, respectively. Two points to note regarding 

the load responses shown in Figure 5-24: (1) a numerical anomaly was removed from the 

monotonic curve (as indicated in the Figure) and (2) the full hysteretic model failed to converge at 

the location shown on the plot. The stress distributions in the concrete and steel are also shown in 

Figures 5-26a and 5-26b, respectively, and a plot of the plastic strain (PEEQ) distribution is shown 

in Figure 5-26c. Results are shown for the hysteretic loading protocol at a drift demand of 5%.   

 

 

Figure 5-24: Monotonic, single-cycle, and hysteretic load responses compared to the reference specimen. 
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Figure 5-25: Pedestal and CFST rotation contribution versus total drift of column. 

 

 

Figure 5-26: Depiction of the (a) concrete and (b) steel Von-Mises stress plots, and (c) the PEEQ strain. 
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The BRBar repair method which incorporates the BRBar Gap energy dissipaters performs 

well in terms of achieving strength and stiffness objectives, however, strength degradation is 

observed around 3.5% drift which is well below the drift capacity of the original column. The latter 

is most likely contributed to by the high tensile stress concentrations and local buckling of the 

yielding core, as shown in Figures 5-26a to 5-26c. This suggests that the BRBar is not experiencing 

purely, axial load demands, but rather a combination of axial and bending that results in a high 

stress concentration at the base of the yielding core. Ultimately, this causes severe necking of 

yielding bar and instability in the numerical model that results in premature failure of the model. 

The presence of a gap between the yielding core and BRM also causes severe local buckling along 

the length of the yielding bar, which places high stress demands at the bearing surface of the core 

to the restraining tube. The flange of the repair steel tube performs well in resisting extreme 

deformations during loading, but there is high stresses and inelastic strains between the bottom 

washer, and coupler, as shown in Figures 5-26b and 5-26c by the circled region, respectively. It is 

therefore recommended to limit the length between the top coupler and bottom washer, and provide 

section of bar that is at least two-times the diameter of the yielding core. The maximum concrete 

stress shown in Figure 5-26a is the maximum crushing capacity (8.3-ksi) of the concrete in the 

pedestal and CFST. As shown in Figure 5-26a and 5-26c, there is no inelastic behavior developed 

at the CFST-pedestal interface. However, high stresses are observed within the pedestal as it bears 

to the adjoined concrete element. 

The PEEQ strain plot shown in Figure 5-26c, effectively demonstrates the ability of the 

BRBars’ yielding cores to act as a structural fuse, isolating extreme inelastic strain demands to the 

external dissipaters. Very minimal yielding is observed in several steel components outside of the 

fuse, such as the steel tube and top, non-yielding bar due local buckling of the yielding core. Slight 
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tube buckling was also observed at the base of the repair steel tube, and original steel tube of the 

CFST located directly above the pedestal. Outward buckling of the repair steel tube is likely due 

to the high compressive stresses of the pedestal bearing on the foundation/cap-beam, while the 

buckling of the steel tube of the CFST column is contributed to failure to fully initiate column-

rocking at the base. The rotation behavior captured during the monotonic loading protocol is shown 

in Figure 5-25 and demonstrates that under initial drift demands, column-rocking is not fully 

achieved as the CFST contributes to at least 10% of the total drift, until 3% column drift is 

completed. After this point, there is a steady increase in pedestal contribution until a peak 

contribution of roughly 97% is recorded at the end of the analysis. 

 

2. BRBar-NoGap 

The moment drift responses for the monotonic, single-cycle, and hysteretic loading cases 

are shown in Figure 5-27 and the rigid-body rotation analysis is shown in Figure 5-28. Table 10 

summarizes these peak response values. The results show that the BRBar-NoGap model also 

successfully returned the damaged CFST to its original strength and stiffness, with peak moment 

resistance ratios (Mr/Mp) of 1.01, 0.98, and 1.02 for the monotonic, single-cycle, and hysteretic 

load regimes.  The hysteretic model also failed to converge due to excessive tensile deformations 

in the yielding bar. This is shown in the stress plots for concrete and steel, shown in Figures 5-29a 

and 5-29b, respectively, and the PEEQ strain plots, shown in Figure 5-29c. Results are presented 

from the 5% drift demand of the hysteretic load.  
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Figure 5-27: Monotonic, single-cycle, and hysteretic load responses compared to the reference specimen. 

 

 

Figure 5-28: Pedestal and CFST contribution total drift of column 
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Figure 5-29: Depiction of the (a) concrete and (b) steel Von-Mises stress plots, and (c) the PEEQ strain. 

 

The hysteretic performance of BRBar-NoGap shows that the repair method can effectively 

achieve strength and stiffness objectives, however the modeled performance is largely dependent 

on the loading protocol. For the monotonic and single-cycle protocols, the repair restored the 

stiffness and strength of the original column with minimal degradation through 5% drift. However, 

the strength of the original column was not achieved for the reversed cyclic protocol, and 

significant degradation was observed at ~3.5% drift. The combined axial and bending loading 

demands (discussed for the BRBar gap case) likely contributed to greater strain demands of the 

yielding bar, which resulted in premature tensile failure. However, by reducing the gap between 

the core and BRM, there was a noticeable improvement in the buckling behavior of the yielding 

core during compressive loadings. The deformed shapes shown in Figures 5-29a to 5-29c, show 

limited local buckling behavior, though severe necking of the yielding core occurs at the top of 

bar; the reasoning for this is expanded upon in following sections. 
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The flange and restraining tube performed well in limiting large out of plane deformations 

of the BRBar during compressive loads, and, according to Figure 5-29c, inelastic strain appears to 

be effectively isolated to the yielding core of the BRBars, with minimal inelastic strain of steel 

components, being recorded outside of the fuses besides the circled regions directly above the top 

coupler. High compressive stress concentrations were recorded within the concrete at the location 

of large bearing demands (e.g. between the pedestal and foundation/cap-beam and along the failure 

surface of the CFST column) as shown in Figure 5-29a and 5-29c. The BRBar-NoGap model also 

show some local buckling of the steel tube in the pedestal, and CFST above the pedestal. The rigid-

body rotation results also provide evidence to this as similarly to the Gap model, column-rocking 

is not fully realized until after 3% of column drift is achieved.  

 

3. Comparisons and Discussion 

 

Including a gap between the yielding fuse and BRM had a significant impact on the local 

behavior of the yielding core. When comparing the hysteretic and monotonic load responses of the 

two models, some light can be shed on the location of extreme necking and why the locations 

differ between the two models. The deformed failure shapes of the BRBar components of the 

monotonic and hysteretic response of the Gap case are shown in Figure 5-30a and 5-30b, while 

the NoGap case deformation responses are shown in 5-30c and 5-30d. For each case, these figures 

are accompanied with a deformed shape profile as observed from the numerical results. 

The BRBars were observed to lose their load carrying capacities as a result of excessive 

deformations and necking of the yielding fuse. While the reasoning of the large inelastic 

deformations is not fully understood, the formation of hinges within the yielding bars may be a 
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result of their geometry. As shown, the application of reverse-cyclic loadings, and 

inclusion/exclusion of the gap, alters the location of this necking. For example, when the Gap 

model case is subjected to a monotonic load, necking is observed at the top of the yielding core; 

this shifts to the bottom of the core, when reverse-cyclic loadings are included, suggesting that the 

inclusion of compressive loads and buckling plays a role in these strain concentration effects. 

Then, when the gap is removed, an equivalent strain demand is observed in the top and bottom of 

the yielding, rather than just the top as is the case of the Gap model. It appears that when restraining 

the yielding core along its whole length, two points of bending form at either end of the bar near 

the couplers, developing an S-shaped deformation pattern. This pattern is different in the Gap case, 

where extreme bending concentrates to only the top of the bar, and the rest of the bar below can 

deform more gradually to shape since it is unrestrained by the BRM, ultimately helping to disperse 

high strain demands. Under cyclic loadings, necking of the NoGap-model is isolated into only the 

top of the bar, again suggesting that this loading regime alters the location of extreme strain.   

Figure 5-31a and 5-31b plots a comparison of the theoretical displacement history (from 

(5-1)) versus the recorded displacement of various points along the BRBar’s yielding core length, 

obtained from the ABAQUS models. These points are: (1) the top of the bar or the point in line 

with where the grout of the BRM ends, (2) the mid-point of the bar, and (3) the bottom of the bar 

or the point in line with where the grout of the BRM ends. It is expected that the displacement of 

points along the bar’s length would be the same, however, this is not the case. The analysis shows 

that displacement varies along the height of the yielding core, where very minimal displacement 

occurs at the bottom of the bar and increases along the height. At larger displacement demands, 

the top of the bar matches well to the theoretical displacement calculated using, (5-1). This is not 
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the case under lower displacement demands and may be contributed to a lack of column-rocking 

(i.e. rotation being isolated in the CFST) that limits the rotation demand on the BRBars.  

 

 

Figure 5-30: Deformed shape of the Gap model under (a) monotonic and (b) hysteretic loads, and the NoGap 

model under (c) monotonic and (d) hysteretic loads . 

 

 

Figure 5-31: Displacement comparisons of the (a) NoGap and (b) Gap models along the BRBar height. 
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In general, the two model cases show similar displacement demands at the three points 

being analyzed, however, the mid-point displacement drops off for the NoGap model which 

otherwise continues for the Gap-case. A comparison of this behavior is highlighted by Figure 5-

32 and its variation is likely due to the difference in necking location between the two models. For 

the NoGap case, necking failure occurs at the top of the bar around Step 12.5, essentially isolating 

displacement to this region and leaving the bottom half of the yielding bar stationary. Then, for 

the Gap case, necking occurs at the bottom of the bar, so the midpoint and top of the bar continue 

to displace until failure. It should also be noted that compressive displacement is not captured 

along the height of the bar. This is likely due to the large inelastic, tensile displacement that occurs, 

so, as the BRBar is unloaded, only elastic displacement is regained, leaving the permanent tensile 

deformation that must be overcome as the yielding core is subjected to compression.  

 

 

Figure 5-32: Comparison of the displacement at mid-point of the BRBar for the Gap and NoGap models. 
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When considering the estimated flexural capacity of the repair, the theoretical moment 

capacity of the performance-based repair can be accurately estimated using the moment-curvature 

analyses presented in Chapter 5.2. From these methods, the strain compatibility method estimated 

a strength of 1.08 Mr/Mp, while the plastic stress distribution method estimated 0.90 Mr/Mp. The 

strain compatibility method most accurately captures the maximum moment, with only an 8% 

overestimation compared to the plastic stress distribution which underestimates strength by 

roughly 10%. In terms of design, however, it is recommended to use the plastic stress distribution 

method since it is a more conservative design approach. Its underestimation is likely contributed 

due to the fact that the BRBars are converted to an equivalent area, thin-walled tube which shifts 

the centroid on this compressive region, closer to the center of the CFST, reducing the moment-

arm and overall, moment contribution. The strain compatibility method, however, still analyzes 

the BRBars as individual components, therefore capturing a larger moment-arm in the BRBars 

which are further from the center of the CFST. 
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6.0 Summary, Conclusions and Future Work 

Concrete filled steel tube (CFST) columns, in comparison to traditional reinforced concrete 

(RC) columns, area a unique alternative to improve structural efficiency and simplify construction 

of highway bridges. The steel tube, located at the optimal location flexural resistance, provides 

concrete confinement, while the infill concrete prevents inward buckling of the steel tube.  

Furthermore, the steel tube inherently serves as the formwork for construction and eliminates the 

need for longitudinal and transverse reinforcement in the column.  

In recent years, research has generated a structurally robust, CFST column-to-

foundation/cap-beam connections for the use in mid-to-high seismic regions. One of these 

connection types is the embedded ring (ER) connection, which consists of an annular steel ring, 

welded to the base of the steel tube of the CFST. Force transfer between the CFST and adjacent 

concrete element is relied solely on the annular ring and steel tube, therefore no load transferring 

dowels or reinforcement is required to pass from the CFST to the foundation/cap-beam. Through 

extensive numerical and experimental investigations, the ER connection has proven to provide 

adequate strength and ductility for seismic applications. When appropriately designed, the failure 

mode consists of outward buckling of the steel tube, followed by ductile tube tearing usually at the 

apex of the buckling for increasing reversed cyclic loading. This particular ductile failure mode of 

the ER CFST connection is advantageous for repair, due to the damage state being readily 

identifiable and accessible. In addition, the steel tube provides a convenient interface that can be 

used for bolted or welded connections. However, to date, no such repair strategies have been 

developed for the ER CFST connection. 
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The primary objective of this thesis was to develop a series of practical repair strategies for 

earthquake damaged ER CFST bridge columns. Two repair strategies were proposed including a 

plastic hinge relocation repair and a performance-based repair. The repair strategies were evaluated 

using a numerical parameter study to evaluate their effectiveness in restoring the stiffness and 

strength of the repaired CFST.  

6.1 Plastic Hinge Relocation Repair Findings 

The plastic hinge relocation repair consists of a concrete filled steel tube pedestal that 

encases the damaged region of the CFST column to reestablish the moment capacity of the CFST 

by shifting inelastic deformation above the pedestal. To provide flexural resistance, the repair 

pedestal is reinforced with steel reinforcing which are epoxied into the adjacent concrete element. 

A series of force transfer mechanisms (FTMs), namely an annular steel ring, shear studs, or weld 

beads strips, are welded to the steel tube of the CFST to provide force transfer between the CFST 

and pedestal. A parametric study was conducted to determine the optimal FTM. The primary 

parameters investigated included the type of FTM (welded ring, shear stud, or weld bead), the size 

of the components (e.g. ring projection from original column), and location within the height of 

the pedestal. Based on the numerical results, the following observations and conclusions were 

drawn from this study. 

• Increasing the rigidity of the force transfer mechanism by using components with a shorter 

length and/or greater thickness (e.g. a shorter thicker ring), was most effective in restoring 

strength and stiffness.  
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• Including force transfer mechanisms along the entire height of the repair pedestal also 

improved performance, by increasing the engagement of the CFST to the repair pedestal, 

thus improving the overall stiffness response. 

• Increasing the rigidity of the force transfer mechanism shifted the location of extreme 

concrete stresses from the damaged region at the base of the pedestal, to the top of the 

pedestal along the CFST-repair concrete fill interface. This suggests that a more rigid force 

transfer mechanism resulted in a larger CFST rotation above the pedestal whereas a less 

rigid force transfer mechanism results in a larger rotation response within the height of the 

pedestal.  

• Of the three FTM types tested, weld beads performed the best. It is recommended to include 

three weld strips distributed up the height of the pedestal at 1/4, 1/2, and 3/4 points. When 

subjected to reverse-cyclic loadings, the weld bead repair successfully reestablished the 

original strength and stiffness of the CFST column, and noticeable outward tube buckling 

was observed above the pedestal, suggesting that the plastic hinge also successfully shifted 

to above the repair pedestal. 

• The plastic hinge repair, in general, may induce a larger moment into the foundation/cap-

beam than originally designed for, which would cause serious damage if not considered. 

• The theoretical plastic moment capacity of the pedestal was calculated using the strain 

compatibility method and plastic stress distribution method, and results showed that neither 

were effective at accurately predicting the strength of the pedestal. 
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6.2 Performance-Based Repair Findings 

A performance-based repair strategy was proposed which consists of a CFST pedestal 

surrounding the damaged region of the original CFST with external energy dissipators bolt-

connected to the steel tube on the exterior of the pedestal. An annular steel ring is welded to the 

base of the repair pedestal to create a rocking interface along the damaged region of the CFST. 

Weld beads within the height of the pedestal are welded to the original CFST to provide force 

transfer between the original column and pedestal. A steel flange is welded to the top of the repair 

steel tube to allow for a bolted connected to the energy dissipators, which are epoxied into the 

adjacent concrete element. No reinforcement passes from the repair pedestal to the foundation/cap-

beam, therefore isolating resistance and damage to the dissipators which can easily be replaced 

post-earthquake to return the structure to service. A buckling restrained, reinforcing bar (BRBar) 

fuse was proposed as the energy dissipator and consists of reduced section of rebar coupled at 

either end to larger, non-yielding sections of bars. A buckling restraining mechanism (BRM) 

encases the core and consists of steel tube filled with grout. The BRBar was experimentally tested 

under cyclic-compressive loadings to confirm the validity of the individual subcomponent as an 

effective energy dissipator. It was found that when completely restrained from lateral 

deformations, the fuse of the BRBar can successfully yield in compression with a 1.12Fy maximum 

axial load and 9.0εy axial strain being recorded. The performance-based repair configuration with 

BRBars as external energy dissipators was evaluated numerically under monotonic, single-cycle, 

and hysteretic loading regimes with the objective of evaluating the performance. Two design 

procedures were investigated by incorporating two different design procedures for the BRBar 

which consisted of: (1) BRBar-Gap - modeling a gap between the BRBar fuse and its BRM and 
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(2) BRBar-NoGap – removing the gap between the fuse and BRM. The following observations 

and principal conclusions were drawn from this study. 

• The BRBar component tests demonstrated that the BRBar can achieve compressive 

yielding of the rebar fuse prior to the development of buckling. 

• The numerical results of the performance-based repair demonstrated that the repair can 

successfully reestablished the original strength and stiffness of the repaired, CFST column. 

• It is paramount to fabricate the BRBar with minimal unsupported lengths in the core, and 

along the coupler. Otherwise, this will create severe instability of the rebar-coupler system, 

resulting in lateral displacements and a reduction in the compressive capacity of the BRBar. 

• It is recommended that the top and bottom, non-yielding bars are at least two times the 

diameter of the fuse, and their lengths are minimized in order to reduce the likelihood of 

their buckling during experimental testing, and in the field. 

• Column-rocking was successfully initiated along the base of pedestal. At max drift 

demands, the pedestal contributed roughly 97% of the rotation while the CFST accounted 

for only 3%. 

• The Gap model case shows significant local buckling within the fuse under reverse-cyclic 

loadings which is otherwise removed in the NoGap case. This was also demonstrated 

during experimental testing, where it was found that buckling occurred when the yielding 

core was not fully braced. Therefore, it is recommended to model the BRBar with a limited 

space between the fuse and BRM. 

• When subjected to reverse-cyclic loadings, complex loadings are imposed on the BRBars 

which consist of a combination of axial and bending loadings. This results in a series of 

numerical instabilities and apparent loss in ductility capacity of the BRBars. 
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• However, when subjected to monotonic or one-cycle loading protocols, the loading 

complexities are not as apparent, and numerical instabilities and extreme deformation of 

the fuse are mitigated. 

• The modified, ATC-24 loading protocol developed successfully predicts the displacement 

demand of the BRBar under large drift demands, but over predicts displacement under 

smaller column drift demands. 

• Within the performance-based repair, the BRBar fuse appears to have varying 

displacement demand along its length, with larger demands at the top of the bar and very 

marginal at the bottom.  

6.3 Future Work  

Several key research recommendations for future work studies are provided herein that 

should be pursued in order to further establish the validity of the two, proposed repair strategies as 

viable methods for repairing earthquake-damaged, ER CFST bridge columns. These include: 

1. Conduct further reverse-cyclic loading, numerical investigations of the BRBar at the 

subcomponent level and as an energy dissipator in the proposed, global repair in order 

to fully comprehend its loading behavior and stress and strain demands. 

2. Further refine the proposed, design methods presented here to better predict the 

strength, stiffness, and ductility capacities of the repair methods. 

3. Provide experimental evidence to support the findings of the numerical models, by 

means of full-scale testing of the two proposed repair methods, and conduct further 
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experimental testing of the BRBar subcomponent using the recommendations 

provided. 



 116 

Appendix A : Design Calculations for Estimating Flexural Demand and Strength 

A1: Plastic Hinge Relocation Repair 

The following presents a detailed design guide for the plastic hinge relocation repair used 

in this study, as presented in Section 4.2. Calculations for predicting the flexural demand on the 

repair section will be shown, as well as design calculations for sizing the CFST repair pedestal and 

reinforcement, using either (1) the strain compatibility method or (2) the plastic stress distribution 

method are provided. Table A-1 provides a summary of the damaged, CFST dimensions and the 

dimensions of the repair CFST pedestal where Figure 4-5 provides reference of the dimensions. 

Initial height and diameter of the repair pedestal were estimated to be 1.0D and 1.5D, respectively, 

where D is the diameter of the original CFST column. 

 

Table A- 1: Original CFST and repair pedestal dimensions. 

LCFST (in) DCFST tCFST Paxial (kips) Dr (in) Hr (in) L’
 (in) MCFST (k-in) 

72 24 0.25 250 36 (1.5D) 24 (1.0D) 48 11000 

 

Estimating Demand: Flexural demand (Mr) of the repair pedestal is estimated from (4-1). 

 

 

𝑀𝑟 =  
𝑀𝐶𝐹𝑆𝑇(𝐿)

𝐿′
=

11000(72)

48
= 16500 𝑘 − 𝑖𝑛 

 

 

Estimating Strength: Strength is estimated from (1) the strain compatibility method and (2) the 

plastic stress distribution method. The material properties used for design are shown in Table A-

2, and Table A-3 provides the location of the reinforcing bars with respect to the center of the 
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repair pedestal, where Figure 4-3 is provided for reference. Bars are numbered 1 to 13, with Bar1 

and Bar13 referring to the extreme tensile and compressive bars, respectively. Note that 

symmetry can be applied to Bar2 to Bar 12. 

 

Table A- 2: Repair material properties. 

Dbar (in) QTYbar Fy (ksi) F’c (ksi) Es (ksi) 

1.125 24 68 8.3 29000 

                                                 

Table A- 3: Location of reinforcing with respect to the center of the CFST pedestal. 

Bar # Y (in) Bar # Y (in) 

1 17.19 8 -4.45 

2 16.60 9 -8.59 

3 14.89 10 -12.15 

4 12.15 11 -14.89 

5 8.59 12 -16.60 

6 4.45 13 -17.19 

7 0  

 

1. Strain Compatibility Method 

A variable, “c”, is used to represent the distance from the extreme concrete compressive 

fiber to the neutral axis and is used to calculate curvature and tensile and compressive forces of 

the cross-section based on their strain development.  
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Reinforcement Contribution: A linear strain distribution is assumed, and the strain in each 

reinforcing bar can be calculated as a function of “c”. First the distance (DC) to the neutral axis 

from each bar is calculated using (A-1): 

 

 

 𝐷𝐶 = 𝑌 + (𝑅𝑖𝑛 − 𝑐) (A-1) 

 

𝑅𝑖𝑛 =
𝐷𝑟

2
− 𝑡 =  

18

2
− 0.25 = 17.75 𝑖𝑛𝑐ℎ𝑒𝑠 

 

 

Then, the force in each reinforcing bar is calculated (A-2), where the maximum allowable 

force in each bar is take as FyAb. Bars are in tension if D + Rin is greater than “c”, and the forces in 

Bar2 to Bar12 should be doubled due to symmetry.  

 

 

 𝐹𝑏𝑎𝑟 = (
0.003

𝑐
)𝐷𝑐𝐸𝑠𝐴𝑏 (A-2) 

 

 

The moment contribution is taken simply then as FbarY, where Y is the absolute value of 

those provided in Table A-3.  

 

Concrete Contribution: The area of concrete in compression (Ac) is calculated as a function of 

“c” using the methodology of calculating the area of a circular segment, with an angle Φ used to 

simplify calculations, as shown in Figure 4-4.  It should also be noted that the area of concrete 

should be reduced by the number of compressive bars (n) present within it, and the contributing 

force (Fc) is calculated using equations (A-3 to A-5). 

 

 

 𝐹𝑐 = 0.95𝐹𝑐
′𝐴𝑐 (A-3) 

 

 𝐴𝑐 =
1

2
𝑅𝑖𝑛

2 (Φ −  sin  Φ) − n𝐴𝑏 (A-4) 
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 𝛷 = 2 cos−1(
𝑅𝑖𝑛−𝑐

𝑅𝑖𝑛
) (A-5) 

 

 

The centroid of the compressive area of concrete, with respect to the center of the pedestal, 

can then be calculated as follows (A-6) in order to determine the flexural resistance provided by 

the repair concrete infill. 

 

 

 𝑌𝑐 =
4𝑅𝑖𝑛 sin3(

1

2
Φ)

3(Φ−sin Φ)
 (A-6) 

 

 

To determine “c”, the axial forces are then summed to equal the axial force (Paxial) subjected 

to the CFST column. Table A-4 and A-5 summarize the results as they pertain to this study, for a 

value of c = 7.22-inches where the plastic moment capacity was determined to be 28,242 k-in. 

 

Table A- 4: Summary of reinforcing bar contributions. 

Bar Dc Fbar Mbar Bar Dc Fbar Mbar 

1 27.71 67.59 1161.76 8 6.08 135.19 601.38 

2 27.13 135.19 2244.36 9 1.93 46.21 397.10 

3 25.41 135.19 2012.23 10 1.63 -39.00 473.94 

4 22.68 135.19 1642.98 11 4.36 -104.38 1553.62 

5 19.12 135.19 1161.77 12 6.08 -135.19 2244.36 

6 14.97 135.19 601.38 13 6.66 -67.59 1161.76 

7 10.52 135.19 0.00 
 

 



 120 

Table A- 5: Concrete Contribution 

Ac (in
2) Yc (in) Fc (kip) Mc (kip-in) 

136.6 13.47 -964 12986 

 

Check Pedestal Height: The pedestal height needs to be verified to ensure that the height is 

sufficient to develop the repair reinforcement. For this application, headed bars are assumed to 

be utilized and (4-2) is used for calculation. 

 

 

𝐻𝑟 =  
0.016𝑓𝑦

√𝑓𝑐
′

(𝑑𝑏) =  
0.016(60000)

√8300
(1.125) = 11.9 𝑖𝑛𝑐ℎ𝑒𝑠  

 

 

2. Plastic Stress Distribution Method 

The plastic stress distribution method assumes that all steel components achieve their yield 

stress, and that concrete under compression achieves 0.95f’c. Under these assumptions, equilibrium 

is achieved by iterating on a variable “Y” that represents determine the distance of the centroid of 

the pedestal to the neutral axis, as shown in Figure 4-4. 

 

Reinforcement Contribution: To simplify calculations, the repair reinforcement area (Ab) is 

equated to an equivalent area (Abe) of a thin-walled steel tube, as shown in Figure A-1. Using the 

radius (Rbm) to the centroid of the repair reinforcement, the required tube thickness (teq) can be 

iterated on until equivalency. Rbm is equal to 17.1875-inches in this repair method.  

 

 

𝐴𝑏𝑒 = 𝐴𝑏  

 

𝐴𝑏 = 24(0.25𝜋) (
9

8
)

2

= 23.85 𝑖𝑛2 
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𝐴𝑏 𝑒 =  𝜋((𝑟𝑏𝑚 +  𝑡𝑒𝑞)
2

−  (𝑟𝑏𝑚 +  𝑡𝑒𝑞)2) →  𝑡𝑒𝑞 =  0.22 𝑖𝑛𝑐ℎ𝑒𝑠  

 

 

An angle Φbm is introduced that is used to define the area of reinforcement in compression 

with respect to the radius to its centroid (Rbm), and can be calculated as a function of “Y” as 

follows. This is then used to calculate the area of bars in compression (Abc) and tension (Abt), using 

(A-7) and (A-8). 

 

 

 Φ𝑏𝑚 =  2cos−1(
𝑌

𝑅𝑏𝑚
)  (A-7) 

 

 𝐴𝑏𝑐 =  (𝑅𝑏𝑚)(Φ𝑏𝑚)(𝑡𝑒𝑞) (A-8) 

 

𝐴𝑏𝑡 =  𝐴𝑏𝑒 − 𝐴𝑏𝑐  
 

 

The centroid is found by using the composite centroid area method, where two segmented 

circles with radii equal to the outside radius of the reinforcement (Rb.out) or the inner radius (Rb.in). 

An angle is found to define each radius (Φb.in and Φb.out) as a function of “Y”, as depicted in Figure 

A-1, and is used to calculate the area and centroid for each case, using (A-9) and (A-10). The case 

for the outside radius is shown below. 

 

 

 𝐴𝑏.𝑜𝑢𝑡 =
1

2
𝑅𝑏.𝑜𝑢𝑡

2 (Φ𝑏.𝑜𝑢𝑡  sin  Φ𝑏.𝑜𝑢𝑡) (A-9) 

 

 𝑌𝑏.𝑜𝑢𝑡 = 𝑅𝑏.𝑜𝑢𝑡 −  
4𝑅𝑏.𝑜𝑢𝑡 sin3(

1

2
Φ𝑏.𝑜𝑢𝑡)

3(Φ𝑏.𝑜𝑢𝑡−sin Φ𝑏.𝑜𝑢𝑡)
 (A-10) 
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Figure A-1: Depiction of composite area method to determine the centroid of repair reinforcing. 

 

This calculation is repeated for the inner radius, and the composite area method is applied 

(A-11) to determine the resulting centroid for the reinforcement in compression 

 

 

 𝑌𝑏𝑐 =  
𝐴𝑏.𝑜𝑢𝑡𝑌𝑏.𝑜𝑢𝑡− 𝐴𝑏.𝑖𝑛𝑌𝑏.𝑖𝑛

𝐴𝑏.𝑜𝑢𝑡+𝐴𝑏.𝑖𝑛
 (A-11) 

 

 

A similar method is repeated for the reinforcement in tension where the angles for the inner 

and outside cases, can be found by subtracting the respective compression reinforcing angles by 

2π. 

 

Concrete Contribution: The area and centroid of the concrete in compression is found in a similar 

fashion as presented in the strain compatibility method, with a value of “Y” being iterated on, 

using (A-3) and (A-12 to A-14). 

 

 

 𝐴𝑐 =
1

2
𝑅𝑖𝑛

2 (Φ −  sin  Φ) − 𝐴𝑏𝑐 (A-12) 
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 𝑌𝑐 = (𝑅𝑖𝑛 −  
4𝑅𝑖𝑛 sin3(

1

2
Φ)

3(Φ−sin Φ)
) (A-13) 

 

 𝛷 = 2 cos−1(
𝑌

𝑅𝑖𝑛
) (A-14) 

 

 

“Y” is then determined by summing the axial loads to be equal to the axial load subjected 

to the column. The resulting moment capacity of the pedestal is found by multiplying the axial 

load of each component by its respective moment arm. The results are shown in Table A-6, with a 

plastic moment capacity of the pedestal being predicted to be equal to 26,975 kip-in, and “Y” equal 

to 11.04 inches. 

 

Table A- 6: Component contribution summary for the plastic stress distribution method. 

Component Area (in2) Force (kip) Centroid (in) Moment (k-in) 

Compressive Bars 6.63 -451 15.1 6799 

Tensile Bars 17.2 1172 5.81 6799 

Concrete 123 -970 13.78 13,377 

 

 

A2: Performance-Based Repair Strategy 

The design methodology for the performance-based repair strategy requires design of the 

global repair strategy, and a subcomponent design for an individual BRBar energy dissipator. The 

flexural capacity of the global repair is estimated using (1) the strain compatibility method, and 

(2) the plastic stress distribution method. Table A-7 provides a summary of the size of the pedestal, 

the desired performance objectives, and the size and quantity of BRBars. Table A-8 provides the 

locations of each BRBar with respect to the center of the pedestal. Note that BRBar1 and BRBar5 
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represent the extreme tensile and compressive resisting BRBars, respectively, and symmetry can 

be applied to BRBar2 to BRBar4. 

 

Table A- 7: Geometry of performance-based repair strategy. 

Dr (in) Hr (in) 

Paxial 

(kips) 

Lcore 

(in) 

t 

(in) 

Mr (k-

in) 

Target Drift 

(%) 

Dfuse 

(in) 

Qty 

36 

(1.5D) 

24 

(1.0D) 

250 15 0.25 11000 5.5 7/8 8 

 

Table A- 8: Location of BRBar energy dissipators. 

Bar # Y (in) 

1 19.375 

2 13.70 

3 0 

4 -13.70 

5 -19.375 

 

Estimating Flexural and Ductility Demand: Due to the presence of column-rocking, there is no 

enlarged moment that is subjected at the base of the pedestal. Rather, the designer is able to choose 

the desired strength performance of the repair, given that the sole flexural resistance is provided 

by the external energy dissipators. For this study, the desired strength performance (Mr) was 

selected to be the original plastic moment capacity of the CFST column (Mp), with a desired 

ductility of 5.5% drift. 
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BRBar Subcomponent Design: The BRBar on a subcomponent level is designed for its expected 

ductility requirement, and to restrain against global buckling. The expected deformation of the 

fuse is estimated from (5-1) and its required length is calculated from (5-2). Figure 5-6 provides 

reference of this design methodology. 

 

 

∆𝐵𝑅𝐵𝑎𝑟=  𝑥 tan(
θ 

100
) =   31.125(tan

5.5

100
) =  1.72 𝑖𝑛𝑐ℎ𝑒𝑠 

 

𝐿𝑓𝑢𝑠𝑒 =  
Δ𝑑,𝐵𝑅𝐵𝑎𝑟

ε𝑑
=

1.72

0.15
= 11.5 𝑖𝑛𝑐ℎ𝑒𝑠 

 

 

For this study, a core length was chosen to be 15-inches. The buckling restraining 

mechanism is designed against a buckling force of 2.0Py, where the required moment inertia (Itube) 

of the steel tube can be calculated from (5-3). The length of the tube was estimated based on the 

length of the yielding core and the height of the LENTON transition couplers. 

 

 

𝑃𝑦 =  𝐹𝑦𝐴𝑏 = 68 (0.25𝜋 (
7

8
)

2

) = 40.8 𝑘𝑖𝑝 

 

𝐼𝑡𝑢𝑏𝑒 =  
𝑃𝑒𝐿𝑡𝑢𝑏𝑒

2

𝐸𝜋2
=  

2.0𝑃𝑦𝐿𝑡𝑢𝑏𝑒
2

𝐸𝜋2
=

2(40.8)22.52

29000𝜋2
= 0.145 𝑖𝑛4 

 

 

Based on available steel tubes from local metal manufacturers, a steel tube with an external 

diameter of 1.90-inches and thickness of 0.154-inches was selected with a resulting moment inertia 

of 0.325 in4. 

 

Estimating Strength: Flexural capacity of the global, BRBar repair is estimated using either (1) the 

strain compatibility method or (2) the plastic stress distribution method. A similar design 
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methodology presented in Appendix A1 is also adopted here however, the repair reinforcement 

(BRBars) operates outside of the concrete, therefore its area does not need to be reduced from the 

area of the repair concrete fill. Also, it is assumed that that confining repair steel tube provides 

compressive resistance however, tension is neglected due to the column-rocking mechanism.  

 

1. Strain Compatibility Method 

Table A-9 provides a summary of the material properties of the BRBar, infill concrete, and 

steel tube used in this repair method.  

 

Table A- 9: Material properties of performance-based repair. 

Fy.bar (ksi) F’c (ksi) Fy.tube (ksi) Es (ksi) 

68 8.3 53 29000 

 

BRBar Contribution: The same equations presented in Appendix A1 for determining the 

contribution of the steel reinforcement is implemented here, however, the compressive strain 

distribution extends upwards to the compressive BRBars as shown in Figure 5-3. 

 

Concrete Contribution: Similarly, the concrete compressive area and centroid location are 

calculated in the same fashion as presented in Appendix A1, however, the area of the concrete is 

not reduced by the compressive BRBars, since they are located outside of the concrete. 

 

Steel Tube Contribution: The confining steel tube compressive area and centroid is calculated 

using the angle Φtube which represents the angle that defines the area of tube in compression. This 

angle is calculated using the centroid radius (Rtm) shown similarly in Figure A-1 as Rbm. The 
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composite area method, also presented in Figure A-1, can then be implemented to determine the 

tube’s centroid. This approach is presented similarly using (A-7) and (A-8) 

 

 

𝑅𝑡𝑚 =
𝐷𝑟

2
−

𝑡

2
=

36

2
−

0.25

2
= 17.875 𝑖𝑛𝑐ℎ𝑒𝑠 

 

𝛷𝑡𝑢𝑏𝑒 = = 2 cos−1(
𝑅𝑖𝑛 − 𝑐

𝑅𝑡𝑚
) 

 

𝐴𝑡𝑢𝑏𝑒 =  (𝑅𝑡𝑚)(Φ𝑡𝑢𝑏𝑒)(𝑡) 

 

𝑃𝑡𝑢𝑏𝑒 = 𝐹𝑦𝐴𝑡𝑢𝑏𝑒 

 

 

The axial forces determined from these methods are then iterated on and summed, until 

they equate to the axial force subjected to the column. Table A-10 and A-11 summarize the 

results of this analysis, where a plastic moment capacity of the global repair was estimated to be 

11,770 kip-in and “c” was determined to be 2.41-inches. 

 

Table A- 10: BRBar moment contributions. 

Bar # Dc (in) Force (kip) Moment (k-in) 

1 34.7 40.9 792 

2 29.0 81.8 1120 

3 15.3 81.8 0 

4 1.64 71.3 976 

5 4.03 -40.9 792 
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Table A- 11: Steel tube and concrete moment contributions. 

Component Area (in2) Force (kip) Centroid (in) Moment (k-in) 

Steel Tube 4.82 -255 17.0 4346 

Concrete 29.1 -229 16.3 3742 

 

2. Plastic Stress Distribution Method 

 

Reinforcement Contribution: The area of the BRBars (Ab) are redistributed into an equivalent area 

(Abe) in a similar fashion presented previously for the plastic hinge relocation repair. This results 

in an equivalent, thin-walled tube as follows, where Rbm is equal to 19.375-inches. The resulting 

tensile and compressive areas and centroids can be calculated as shown previously.  

 

𝐴𝑏𝑒 = 𝐴𝑏  

𝐴𝑏 = 8(0.25𝜋) (
7

8
)

2

= 4.81 𝑖𝑛2 

𝐴𝑏 𝑒 =  𝜋((𝑟𝑏𝑚 +  𝑡𝑒𝑞)
2

−  (𝑟𝑏𝑚 +  𝑡𝑒𝑞)2) →  𝑡𝑒𝑞 =  0.040 𝑖𝑛𝑐ℎ𝑒𝑠  

 

Concrete and steel tube contributions: Again, the concrete and steel tube contributions are 

calculated as shown in the plastic stress distribution method of Appendix A1, and the strain 

compatibility method of this section, respectively. Following these guidelines, the plastic stress 

distribution method determined a plastic moment capacity of 9866 k-in for the BRBar repair, 

where “Y” was determined to be 15.6-inches. Table A-12 summarizes the contributions of each 

component. 
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Table A- 12:  Component contribution summary for the plastic stress distribution method. 

Component Area (in2) Force (kip) Centroid (in) Moment (k-in) 

Compressive Bars 0.978 -66.5 18.1 1203 

Tensile Bars 3.83 261 4.62 1203 

Concrete 25.4 -200 16.4 3288 

Steel Tube 4.61 -244 17.1 4172 

 



 130 

Bibliography 

ABAQUS, 2017. ABAQUS User Manual 6.14. 

 

Abdulridha, A., Palermo, D., Foo, S., Vecchio, F.J., 2013. Behavior and modeling of superelastic 

shape memory alloy reinforced concrete beams. Engineering Structures 49, 893–904. 

https://doi.org/10.1016/j.engstruct.2012.12.041 

 

Alexander, M., Beushausen, H.-D., Dehn, F., Moyo, P. (Eds.), 2008. Concrete Repair, 

Rehabilitation and Retrofitting II: 2nd International Conference on Concrete Repair, 

Rehabilitation and Retrofitting, ICCRRR-2, 24-26 November 2008, Cape Town, South 

Africa. CRC Press. https://doi.org/10.1201/9781439828403 

 

American Concrete Institute, 2014. Building Code Requirements for Structural Concrete (ACI 

318-14). American Concrete Institute. 

 

American Society of Civil Engineers, 2011. Manual of Steel Construction, 14th Edition, 14th ed. 

Chicago: AISC. 

 

Azizinamini, A., Ghosh, S.K., 1997. Steel Reinforced Concrete Structures in 1995 Hyogoken-

Nanbu Earthquake. Journal of Structural Engineering 123, 986–992. 

https://doi.org/10.1061/(ASCE)0733-9445(1997)123:8(986) 

 

Baird, A., Smith, T., Palermo, A., Pampanin, S., 2014. Experimental and numerical Study of U-

shape Flexural Plate (UFP) dissipators 9. 

 

Bruneau, M., Uang, C.-M., Whittaker, A., 2011. Ductile design of steel structures, 2nd ed. New 

York: McGraw-Hill. 

 

Chou, C.-C., Chen, Y.-C., 2006. Cyclic tests of post-tensioned precast CFT segmental bridge 

columns with unbonded strands. Earthquake Engng Struct. Dyn. 35, 159–175. 

https://doi.org/10.1002/eqe.512 

 

Dawood, H., ElGawady, M., Hewes, J., 2012. Behavior of Segmental Precast Posttensioned Bridge 

Piers under Lateral Loads. J. Bridge Eng. 17, 735–746. 

https://doi.org/10.1061/(ASCE)BE.1943-5592.0000252 

 

Demir, A., Ozturk, H., Edip, K., Stojmanovska, M., Bogdanovic, A., 2018. EFFECT OF 

VISCOSITY PARAMETER ON THE NUMERICAL SIMULATION OF REINFORCED 

CONCRETE DEEP BEAM BEHAVIOR 8, 7. 

 

Ghobarah, A., 2001. Performance-based design in earthquake engineering: state of development. 

Engineering Structures 23, 878–884. https://doi.org/10.1016/S0141-0296(01)00036-0 



 131 

Goodnight, J., Kowalsky, Mervyn J., Nau, James M., 2012. Goodnight et al. 2009 - The Effect of 

Load History on  Reinforced Concrete Bridge Column Behavior.pdf. 

 

He, R., Sneed, L.H., Belarbi, A., 2013. Rapid Repair of Severely Damaged RC Columns with 

Different Damage Conditions: An Experimental Study. Int J Concr Struct Mater 7, 35–50. 

https://doi.org/10.1007/s40069-013-0030-7 

 

He, R., Yang, Y., Sneed, L.H., 2015. Seismic Repair of Reinforced Concrete Bridge Columns: 

Review of Research Findings. J. Bridge Eng. 20, 04015015. 

https://doi.org/10.1061/(ASCE)BE.1943-5592.0000760 

 

Hitaka, T., Suita, K., Kato, M., 2003. CFT COLUMN BASE DESIGN AND PRACTICE IN 

JAPAN 11. 

 

Hsu, H.-L., Lin, H.-W., 2006. Improving seismic performance of concrete-filled tube to base 

connections. Journal of Constructional Steel Research 62, 1333–1340. 

https://doi.org/10.1016/j.jcsr.2006.02.002 

 

Hsu, T.T.C., Mo, Y.L., 2010. UNIFIED THEORY OF CONCRETE STRUCTURES. John Wiley 

and Sons, Ltd. 

 

Jothimani, B., Umarani, C., 2019. EXPERIMENTAL INVESTIGATION ON CONCRETE 

FILLED STEEL TUBULAR COLUMN TO FOUNDATION CONNECTIONS 

SUBJECTED TO COMBINED AXIAL AND LATERAL CYCLIC LOADING. Lat. Am. 

j. solids struct. 16, e202. https://doi.org/10.1590/1679-78255629 

 

Kadoya, H., Kawaguchi, J., Morino, S., 2004. Experimental Study on Strength and Stiffness of 

Bare Type CFT Column Base with Central Reinforcing Bars, in: Composite Construction 

in Steel and Concrete V. Presented at the Fifth International Conference on Composite 

Construction in Steel and Concrete, American Society of Civil Engineers, Kruger National 

Park, Berg-en-Dal, Mpumalanga, South Africa, pp. 127–136. 

https://doi.org/10.1061/40826(186)13 

 

Kappes, L., Berry, M., Murray, F., Stephens, J., Barnes, K., 2016. Seismic Performance of 

Concrete-Filled Steel Tube to Concrete Pile-Cap Connections. J. Bridge Eng. 21, 

04016042. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000901 

 

Krawinkler, H., 1992. Guidelines for cyclic seismic testing of components of steel structures. 

 

Krish, Z.F., Kowalsky, M.J., Seracino, R., Nau, J.M., 2018a. Repair of Reinforced Concrete Bridge 

Columns via Plastic Hinge Relocation. Volume 1: Repair using Conventional Materials 

(Final Report No. 4000(142)). State of Alaska, Alaska Dept. of Transportation and Public 

Facilities Research and Technology Transfer. 

 



 132 

Krish, Z.F., Kowalsky, M.J., Seracino, R., Nau, J.M., 2018b. Repair of Reinforced Concrete 

Birdge Columns via Plastic Hinge Relocation. Volume 3: Design Guide (Final Report No. 

4000(142)). State of Alaska, Alaska Dept. of Transportation and Public Facilities Research 

and Technology Transfer. 

 

Lehman, D.E., Gookin, S.E., Nacamuli, A.M., Moehle, J.P., 2001. Repair of Earthquake-Damaged 

Bridge Columns. ACI Structural Journal 10. 

 

Lehman, D.E., Roeder, C.W., 2012. Foundation connections for circular concrete-filled tubes. 

Journal of Constructional Steel Research 78, 212–225. 

https://doi.org/10.1016/j.jcsr.2012.07.001 

 

Marriott, D., Pampanin, S., Palermo, A., 2011. Biaxial testing of unbonded post-tensioned rocking 

bridge piers with external replacable dissipaters. Earthquake Engng. Struct. Dyn. 40, 1723–

1741. https://doi.org/10.1002/eqe.1112 

 

Marson, J., Bruneau, M., 2004. Cyclic Testing of Concrete-Filled Circular Steel Bridge Piers 

having Encased Fixed-Based Detail. Journal of Bridge Engineering. 

 

Roeder, C.W., Lehman, D.E., Stephens, M., 2014. Concrete-Filled Steel Tubes for Accelerated 

Bridge Construction. Transportation Research Record 2406, 49–58. 

https://doi.org/10.3141/2406-06 

 

Rutledge, S.T., Kowalsky, M.J., Seracino, R., Nau, J.M., 2014. Repair of Reinforced Concrete 

Bridge Columns Containing Buckled and Fractured Reinforcement by Plastic Hinge 

Relocation. J. Bridge Eng. 19, A4013001. https://doi.org/10.1061/(ASCE)BE.1943-

5592.0000492 

 

Shoeibi, S., Kafi, M.A., Gholhaki, M., 2017. New performance-based seismic design method for 

structures with structural fuse system. Engineering Structures 132, 745–760. 

https://doi.org/10.1016/j.engstruct.2016.12.002 

 

Staton, J., Eberhard, M., Sanders, D., Thonstad, T., Schaefer, J., Kennedy, B., Olafur Haraldsson, 

Mantawy, I., 2014. A PRE-TENSIONED, ROCKING BRIDGE BENT FOR ABC IN 

SEISMIC REGIONS. https://doi.org/10.4231/d36688k3g 

 

Stephens, M.T., 2016. Design Expressions and Dynamic Evaluation of CFST Bridges Subjected 

to Seismic Hazards. 

 

Stephens, M.T., Berg, L.M., Lehman, D.E., Roeder, C.W., 2016a. Seismic CFST Column-to-

Precast Cap Beam Connections for Accelerated Bridge Construction. J. Struct. Eng. 142, 

04016049. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001505 

 

Stephens, M.T., Lehman, D.E., Roeder, C.W., 2016b. Design of CFST column-to-foundation/cap 

beam connections for moderate and high seismic regions. Engineering Structures 122, 323–

337. https://doi.org/10.1016/j.engstruct.2016.05.023 



 133 

 

Tao, Z., Han, L.-H., Wang, L.-L., 2007. Compressive and flexural behaviour of CFRP-repaired 

concrete-filled steel tubes after exposure to fire. Journal of Constructional Steel Research 

63, 1116–1126. https://doi.org/10.1016/j.jcsr.2006.09.007 

 

Tao, Z., Han, L.-H., Zhuang, J.-P., 2008. Cyclic performance of fire-damaged concrete-filled steel 

tubular beam–columns repaired with CFRP wraps. Journal of Constructional Steel 

Research 64, 37–50. https://doi.org/10.1016/j.jcsr.2007.02.004 

 

Truong, G.T., Kim, J.-C., Choi, K.-K., 2017. Seismic performance of reinforced concrete columns 

retrofitted by various methods. Engineering Structures 134, 217–235. 

https://doi.org/10.1016/j.engstruct.2016.12.046 

 

Varela, S., ‘Saiid’ Saiidi, M., 2016. A bridge column with superelastic NiTi SMA and replaceable 

rubber hinge for earthquake damage mitigation. Smart Mater. Struct. 25, 075012. 

https://doi.org/10.1088/0964-1726/25/7/075012 

 

V.Chaudhari, S., A. Chakrabarti, M., 2012. Modeling of Concrete for Nonlinear Analysis using 

Finite Element Code ABAQUS. IJCA 44, 14–18. https://doi.org/10.5120/6274-8437 

 

White, S., 2014. Controlled Damage Rocking Systems for Accelerated Bridge Construction. 

 

White, S., Palermo, A., 2016. Quasi-Static Testing of Posttensioned Nonemulative Column-

Footing Connections for Bridge Piers. J. Bridge Eng. 21, 04016025. 

https://doi.org/10.1061/(ASCE)BE.1943-5592.0000872 

 

Wu, R.-Y., Pantelides, C.P., 2017. Rapid repair and replacement of earthquake-damaged concrete 

columns using plastic hinge relocation. Composite Structures 180, 467–483. 

https://doi.org/10.1016/j.compstruct.2017.08.051 

 

Zhu, H., Stephens, M.T., Roeder, C.W., Lehman, D.E., 2017. Inelastic response prediction of 

CFST columns and connections subjected to lateral loading. Journal of Constructional 

Steel Research 132, 130–140. https://doi.org/10.1016/j.jcsr.2017.01.016 

 


	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1.0 Introduction
	1.1 Motivation for Research
	1.2 Research Objective
	1.2.1  Proposed Repair Strategies
	Figure 1-1: Proposed repair strategies using (a) section enlargement and (b) external energy dissipators.


	1.3 Report Outline

	2.0 Literature Review
	2.1 CFST Column to Foundation/Cap-Beam Connections
	2.1.1  Exposed CFST Connections
	Figure 2-1: Exposed base plate connection with CRBs (Kadoya et al. 2004).

	2.1.2  Embedded CFST Connections
	Figure 2-2: Embedded CFST connection (a) without stiffeners and (b) with stiffeners (Hsu and Lin 2006).
	Figure 2-3: Hysteretic performance of a (a) stiffened connection at 0D and (b) 0.5D, and (c) an unstiffened connection at 0.5D (Hsu and Lin 2006).

	2.1.3  The Embedded Ring (ER) Connection
	Figure 2-4: Proposed grouted, ER connection.
	Figure 2-5: Example of an (a) irreparable, brittle CFST foundation/cap-beam failure and (b) a reparable, ductile CFST tube failure (Lehaman and Roeder 2012; Stephens 2019).


	2.2 Plastic Hinge Relocation Repairs
	2.2.1  Fiber Reinforced Polymer (FRP) Wraps
	Figure 2-6: CFRP repair of (a) Specimen 1, (b) Specimen 2, and (c) Specimen 3 Rutledge et al. (2014).

	2.2.2  Section Enlargement
	Figure 2-7: (a) Mechanical head to improve concrete bonding of repaired rupture bar and (b) its strain vs column displacement response (Krish et al. 2018b).


	2.3 Performance Based Repair Strategies
	2.3.1  Available Energy Dissipators for Implementation in Bridge Structures
	Figure 2-8: Idealized hysteretic response of Shape Memory Alloys (Abdulridha et al. 2013).

	2.3.2  Column-Rocking and Self-Centering Techniques
	Figure 2-9: Bridge column with controlled rocking, and self-centering effects from an internal post-tension bar (White and Palermo 2016).

	2.3.3  Dissipative Controlled Rocking (DCR) Columns
	Figure 2-10: (a) Proposed repair connection, (b) experimentally tested repair, and (c) steel collar to connect external energy dissipators (White and Palermo 2016).
	Figure 2-11: Hysteretic performance of the (a) undamaged connection and (b) the repaired connection (White and Palermo 2016).
	Figure 2-12: The experimentally tested segmented, CFST bridge columns, fabricated either (a) without energy dissipators or (b) with dissipators (Chou and Chen 2006).



	3.0 Analytical Modeling of CFST Columns Under Seismic Loadings
	3.1 Numerical Model Overview
	Figure 3-1: (a) Typical bridge containing CFST columns with a depiction of the (b) ABAQUS model overview and (c) varying mesh densities.
	3.1.1  Non-linear Material Properties and Interaction Definitions
	Figure 3-2: Non-linear stress-strain curves for (a) concrete, (b) the steel tube, and (c) reinforcing steel.
	Table 1: Plasticity parameters for CDP model.
	Figure 3-3: CDP stress-strain curve response of concrete subjected to uniaxial (a) tension and (b) compression (ABAQUS, 2017).
	Figure 3-4: Depiction of the “pre-crack” approach implemented at the plastic hinge of the CFST column.


	3.2 Numerical Validation with Reference Specimen
	Figure 3-5: Geometric detailing of the CFST reference specimen.
	Table 2: Summary of the reference specimen geometry.
	Table 3: Summary of the reference specimen material properties.
	Figure 3-6: Experimental vs numerical response of the reference specimen.
	3.2.1  Modeling Initial Earthquake Damage
	Figure 3-7: Typical buckling failure captured (a) experimentally and (b) numerically, and (c) its damage-simulation in ABAQUS.



	4.0 Plastic Hinge Relocation Repair Strategy
	4.1 Repair Overview
	Figure 4-1: Repair methodologies using (a) welded ring, (b) shear studs,  and (c) weld beads
	4.1.1  Performance Objectives

	4.2 Design Procedure
	4.2.1  Estimating Flexural Demand and Pedestal Height
	Figure 4-2: Flexural response of the CFST column repair using the plastic hinge relocation method.

	4.2.2  Estimating Flexural Capacity of the Repair Pedestal
	Figure 4-3: Idealized stress-strain curves of the strain compatibility method.
	Figure 4-4: Idealized stress-strain curves of the plastic stress distribution method.
	Figure 4-5: Reference figure for the final design of the plastic hinge relocation repair.
	Table 4: Plastic hinge relocation repair geometry.


	4.3 Numerical Model
	Figure 4-6: (a) Numerical overview of the weld bead plastic hinge repair and (b) views of the pedestal.
	4.3.1  Parametric Analysis of the FTMs
	Table 5: Summary of ER parameters.
	Table 6: Summary of SS parameters.
	Table 7: Summary of WB parameters.


	4.4 Analytical Results
	Figure 4-7: Idealized rigid body rotation of the plastic hinge repair strategy.
	Table 8: Summary of FTM parameteric study
	Figure 4-8: Deptiction of the (a) overview of ER, FTM repairs, (b) moment-drift response, and (c) rigid-body rotation.
	Figure 4-9: Concrete stress concentration at 4% drift for repair (a) ER-8t, (b) ER-4t, and (c) ER-2x4t.
	Figure 4-10: Steel stress concentration at 4% drift for repair (a) ER-8t, (b) ER-4t, and (c) ER-2x4t where the concrete of the pedestal and CFST are not shown for clarity.
	Figure 4-11: (a) Overview of the shear stud repair method with depiction of its (b) moment-drift and (b) rigid-body rotation response
	Figure 4-12: Concrete stress concentration at 4% drift for repair (a) SS-x2 and (b) SS-x4.
	Figure 4-13: Steel stress concentration at 4% drift for repair (a) SS-x2 and (b) SS-x4 where the concrete of the pedestal and CFST are not shown for clarity.
	Figure 4-14: Depiciton of the (a) overview of the weld bead repair and its (b) moment-drift and (c) rigid-body rotation response.
	Figure 4-15: Concrete stress concentration at 4% drift for repair (a) WB-x2 and (b) WB-x3 and at 3.30% drift of (c) WB-x3-1.
	Figure 4-16: Steel stress concentration at 4% drift for repair (a) WB-x2 and (b) WB-x3 and at 3.30% drift of (c) WB-x3-1 where the concrete of the pedestal and CFST are not shown for clarity.
	Figure 4-17: Comparison of the best performing repair methods, depicting the (a) moment-drift and (b) rigid-body rotiation responses.
	Figure 4-18: Hyteretic peformance of WB-x3 compared to the numerical results of the reference specimen.
	Figure 4-19: PEEQ vs %Drift of WB-x3 and WB-x3-1 repair methods of extreme fiber reinforcing in pedestal.


	5.0 Performance-Based Repair Strategy
	5.1 Performance-Based Repair Strategy Overview
	Figure 5-1: Peformance-based repair using external energy dissipators and column-rocking.
	Figure 5-2: Idealized rigid-body rotation of the peformance-based repair.

	5.2 Design of the Performance-Based Repair
	Figure 5-3: Strain compatability method idealized equilibrium diagram.
	Figure 5-4: Idealized plastic stress distriubtion method equilibrium diagram.

	5.3 Buckling Restrained Reinforcing Bar (BRBar)
	Figure 5-5: Depiciton of the BRBar energy dissipator.
	5.3.1  Subcomponent Design of the BRBar
	Figure 5-6: Idealized deformation demand of the BRBar at a given column-drift.


	5.4 Experimental Program for the BRBar Subcomponent
	Figure 5-7: (a) Tested BRBar subcomponent with the (b) dimensions of each of its parts.
	5.4.1  Fabrication of Specimens and Experimental Setup
	Figure 5-8: (a) Internal plugs for (b) pouring the BRM’s grout, and (c) removing them after curing.
	Figure 5-9: (a) The experimental testing apparatus and displacement-controlled loading protocols for the (b) BRBars and (c) unbraced speciemens.

	5.4.2  Results and Discussion
	Figure 5-10: (a) Unbraced#6 deformation response compared to (b) BRBar#6.
	Figure 5-11: Force vs strain responses recorded by the (a) Northern and (b) Western strain gauges on the yielding core.
	Figure 5-12: Force vs strain responses recorded by the (a) hoop strain and (b) longitudinal strain gauges on the steel tube of the BRM.
	Figure 5-13: Theoretical strain (in/in) vs force (kip) response of BRBar#6 and Unbraced#6.
	Figure 5-14: The (a) idealized buckling profile of BRBar#6 and (b) experimental buckling profile.
	Figure 5-15: (a) Bushing machined to be placed (b) between coupler and BRM to reduce lateral displacement.
	Figure 5-16: Depiction of the buckling of the top, non-yielding bar which was replaced during testing.
	Figure 5-17: Final deformed shape of (a) Unbraced#7 and (b) BRBar#7.
	Figure 5-18: Force vs strain responses recorded by the (a) Northern and (b) Western strain gauges on the yielding core.
	Figure 5-19: Force vs strain responses recorded by the (a) hoop and (b) longitudinal strain gauges on the steel tube of the BRM.
	Figure 5-20: Force vs theoretical strain of BRBar#7 and Unbraced#7
	Figure 5-21: The (a) idealized buckling profile of BRBar#7 and (b) experimental buckling profile.

	5.4.3  General Comments and Recommendation

	5.5 Numerical Modeling of Performance-Based Repair
	Table 9: Design results of the performance-based repair for numerical investigation.
	Figure 5-22: (a) Overview of the performance-based repair model and a (b) detail of the pedestal.
	5.5.1  BRBar Model
	Figure 5-23: Depticiton of (a) the tpyical mesh density of (b) the NoGap and (c) Gap model cases


	5.6 Results and Discussion of the Global Repair Response
	Table 10: Summary of peak responses from numerical analysis of the performance-based repair.
	Figure 5-24: Monotonic, single-cycle, and hysteretic load responses compared to the reference specimen.
	Figure 5-25: Pedestal and CFST rotation contribution versus total drift of column.
	Figure 5-26: Depiction of the (a) concrete and (b) steel Von-Mises stress plots, and (c) the PEEQ strain.
	Figure 5-27: Monotonic, single-cycle, and hysteretic load responses compared to the reference specimen.
	Figure 5-28: Pedestal and CFST contribution total drift of column
	Figure 5-29: Depiction of the (a) concrete and (b) steel Von-Mises stress plots, and (c) the PEEQ strain.
	Figure 5-30: Deformed shape of the Gap model under (a) monotonic and (b) hysteretic loads, and the NoGap model under (c) monotonic and (d) hysteretic loads .
	Figure 5-31: Displacement comparisons of the (a) NoGap and (b) Gap models along the BRBar height.
	Figure 5-32: Comparison of the displacement at mid-point of the BRBar for the Gap and NoGap models.


	6.0 Summary, Conclusions and Future Work
	6.1 Plastic Hinge Relocation Repair Findings
	6.2 Performance-Based Repair Findings
	6.3 Future Work

	Appendix A : Design Calculations for Estimating Flexural Demand and Strength
	Table A- 1: Original CFST and repair pedestal dimensions.
	Table A- 2: Repair material properties.
	Table A- 3: Location of reinforcing with respect to the center of the CFST pedestal.
	Table A- 4: Summary of reinforcing bar contributions.
	Table A- 5: Concrete Contribution
	Figure A-1: Depiction of composite area method to determine the centroid of repair reinforcing.
	Table A- 6: Component contribution summary for the plastic stress distribution method.
	Table A- 7: Geometry of performance-based repair strategy.
	Table A- 8: Location of BRBar energy dissipators.
	Table A- 9: Material properties of performance-based repair.
	Table A- 10: BRBar moment contributions.
	Table A- 11: Steel tube and concrete moment contributions.
	Table A- 12:  Component contribution summary for the plastic stress distribution method.

	Bibliography

