74 research outputs found

    Fitting multiple bell curves stably and accurately to a time series as applied to Hubbert cycles or other phenomena

    Get PDF
    Bell curves are applicable to understating many observations and measurements across the sciences. Relating Gaussian curves to data is a common because of its relation to both the Central Limit Theorem and to random error. Similarly, fitting logistic derivatives to oil or other nonrenewable resource production is common practice. Fitting bell curves to a time series is an inherently non-linear problem requiring initial estimates of the parameters describing the bellcurves. Poor estimates lead to instability and divergent solutions. Fitting to a cumulative curve improves stability, but at the expense of accuracy of the final solution. Jointly fitting multiple bell curves is superior to extraction of curves one at a time, but further exacerbates the non-linearity. Including both the cumulative data and the bell-curve data within the inversion, can exploit the greater stability of the cumulative fit and the greater accuracy of a direct fit. The algorithm presented here inverts for multiple bells by combining cumulative and direct fits to exploit the best features of both. The versatility and accuracy of the algorithm are demonstrated using two different Earth Science examples: a seismo-volcanic sequence recorded by a hydrophone array moored to the seafloor and U.S. coal production. The MatLab function used here for joint curve determination is included in the online manuscript complementary material

    Seismological imaging of ridge–arc interaction beneath the Eastern Lau Spreading Center from OBS ambient noise tomography

    Get PDF
    The Lau Basin displays large along-strike variations in ridge characters with the changing proximity of the adjacent subduction zone. The mechanism governing these changes is not well understood but one hypotheses relates them to interaction between the arc and back-arc magmatic systems. We present a 3D seismic velocity model of the shallow mantle beneath the Eastern Lau back-arc Spreading Center (ELSC) and the adjacent Tofua volcanic arc obtained from ambient noise tomography of ocean bottom seismograph data. Our seismic images reveal an asymmetric upper mantle low velocity zone (LVZ) beneath the ELSC. Two major trends are present as the ridge-to-arc distance increases: (1) the LVZ becomes increasingly offset from the ridge to the north, where crust is thinner and the ridge less magmatically active; (2) the LVZ becomes increasingly connected to a sub-arc low velocity zone to the south. The separation of the ridge and arc low velocity zones is spatially coincident with the abrupt transition in crustal composition and ridge morphology. Our results present the first mantle imaging confirmation of a direct connection between crustal properties and uppermost mantle processes at ELSC, and support the prediction that as ELSC migrates away from the arc, a changing mantle wedge flow pattern leads to the separation of the arc and ridge melting regions. Slab-derived water is cutoff from the ridge, resulting in abrupt changes in crustal lava composition and crustal porosity. The larger offset between mantle melt supply and the ridge along the northern ELSC may reduce melt extraction efficiency along the ridge, further decreasing the melt budget and leading to the observed flat and faulted ridge morphology, thinner crust and the lack of an axial melt lens

    Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins

    Get PDF
    The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors. First, we define PFASs, classify them into various families, and recommend a pragmatic set of common names and acronyms for both the families and their individual members. Terminology related to fluorinated polymers is an important aspect of our classification. Second, we provide a brief description of the 2 main production processes, electrochemical fluorination and telomerization, used for introducing perfluoroalkyl moieties into organic compounds, and we specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental processes or by human metabolism, into long-chain perfluoroalkyl carboxylic or sulfonic acids, which are currently the focus of regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds, providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers. Integr Environ Assess Manag 2011;7:513–541. © 2011 SETA

    The Time-resolved Atomic, Molecular and Optical Science Instrument at the Linac Coherent Light Source

    Full text link
    The newly constructed Time-resolved atomic, Molecular and Optical science instrument (TMO), is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per pulse energy, as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators build a soft X-ray free electron laser with the new variable gab undulator section. With this flexible light sources, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports Atomic, Molecular and Optical (AMO), strong-field and nonlinear science and will host a designated new dynamic reaction microscope with a sub-micron X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program

    Seismic anisotropy of the Archean crust in the Minnesota River Valley, Superior Province

    Get PDF
    The Minnesota River Valley (MRV) subprovince is a well-exposed example of late Archean lithosphere. Its high-grade gneisses display a subhorizontal layering, most likely extending down to the crust-mantle boundary. The strong linear fabric of the gneisses results from high-temperature plastic flow during collage-related contraction. Seismic anisotropies measured up to 1 GPa in the laboratory, and seismic anisotropies calculated through forward-modeling indicate ΔVP ~5-6% and ΔVS ~3%. The MRV crust exhibits a strong macroscopic layering and foliation, and relatively strong seismic anisotropies at the hand specimen scale. Yet the horizontal attitude of these structures precludes any substantial contribution of the MRV crust to shear wave splitting for vertically propagating shear waves such as SKS. The origin of the regionally low seismic anisotropy must lie in the upper mantle. A horizontally layered mantle underneath the United States interior could provide an explanation for the observed low SWS. Key Points The Archean crust of the Minnesota River Valley is strongly anisotropic The horizontally layered crust of the MRV cannot split vertical shear waves The cause of low SWS in the MRV must be in the uppermost mantle ©2014. American Geophysical Union. All Rights Reserved

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore