50 research outputs found

    Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous ciliopathy disorder affecting cilia and sperm motility. A range of ultrastructural defects of the axoneme underlie the disease, which is characterised by chronic respiratory symptoms and obstructive lung disease, infertility and body axis laterality defects. We applied a next-generation sequencing approach to identify the gene responsible for this phenotype in two consanguineous families

    MicroRNA-142 Critically Regulates Group 2 Innate Lymphoid Cell Homeostasis and Function

    Get PDF
    Innate lymphoid cells are central to the regulation of immunity at mucosal barrier sites, with group 2 innate lymphoid cells (ILC2s) being particularly important in type 2 immunity. In this study, we demonstrate that microRNA(miR)-142 plays a critical, cell-intrinsic role in the homeostasis and function of ILC2s. Mice deficient for miR-142 expression demonstrate an ILC2 progenitor_biased development in the bone marrow, and along with peripheral ILC2s at mucosal sites, these cells display a greatly altered phenotype based on surface marker expression. ILC2 proliferative and effector functions are severely dysfunctional following Nippostrongylus brasiliensis infection, revealing a critical role for miR-142 isoforms in ILC2-mediated immune responses. Mechanistically, Socs1 and Gfi1 expression are regulated by miR-142 isoforms in ILC2s, impacting ILC2 phenotypes as well as the proliferative and effector capacity of these cells. The identification of these novel pathways opens potential new avenues to modulate ILC2-dependent immune functions

    Mutations in SLC25A22: hyperprolinaemia, vacuolated fibroblasts and presentation with developmental delay

    Get PDF
    Mutations in SLC25A22 are known to cause neonatal epileptic encephalopathy and migrating partial seizures in infancy. Using whole exome sequencing we identified four novel SLC25A22 mutations in six children from three families. Five patients presented clinical features similar to those in the literature including hypotonia, refractory neonatal‐onset seizures and developmental delay. However, the sixth patients presented atypically with isolated developmental delay, developing late‐onset (absence) seizures only at 7 years of age. Abnormal metabolite levels have not been documented in the nine patients described previously. One patient in our series was referred to the metabolic clinic because of persistent hyperprolinaemia and another three had raised plasma proline when tested. Analysis of the post‐prandial plasma amino acid response in one patient showed abnormally high concentrations of several amino acids. This suggested that, in the fed state, when amino acids are the preferred fuel for the liver, trans‐deamination of amino acids requires transportation of glutamate into liver mitochondria by SLC25A22 for deamination by glutamate dehydrogenase; SLC25A22 is an important mitochondrial glutamate transporter in liver as well as in brain. Electron microscopy of patient fibroblasts demonstrated widespread vacuolation containing neutral and phospho‐lipids as demonstrated by Oil Red O and Sudan Black tinctorial staining; this might be explained by impaired activity of the proline/pyrroline‐5‐carboxylate (P5C) shuttle if SLC25A22 transports pyrroline‐5‐carboxylate/glutamate‐γ‐semialdehyde as well as glutamate

    An instructive role for Interleukin-7 receptor α in the development of human B-cell precursor leukemia

    Get PDF
    © The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Kinase signaling fuels growth of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Yet its role in leukemia initiation is unclear and has not been shown in primary human hematopoietic cells. We previously described activating mutations in interleukin-7 receptor alpha (IL7RA) in poor-prognosis "ph-like" BCP-ALL. Here we show that expression of activated mutant IL7RA in human CD34+ hematopoietic stem and progenitor cells induces a preleukemic state in transplanted immunodeficient NOD/LtSz-scid IL2RÎłnull mice, characterized by persistence of self-renewing Pro-B cells with non-productive V(D)J gene rearrangements. Preleukemic CD34+CD10highCD19+ cells evolve into BCP-ALL with spontaneously acquired Cyclin Dependent Kinase Inhibitor 2 A (CDKN2A) deletions, as commonly observed in primary human BCP-ALL. CRISPR mediated gene silencing of CDKN2A in primary human CD34+ cells transduced with activated IL7RA results in robust development of BCP-ALLs in-vivo. Thus, we demonstrate that constitutive activation of IL7RA can initiate preleukemia in primary human hematopoietic progenitors and cooperates with CDKN2A silencing in progression into BCP-ALL.This work was supported by the Israel Science Foundation (# 1178/12 to S.I.), Children with Cancer (UK) (S.I. and T.E.), Swiss Bridge Foundation (S.I.), WLBH Foundation (S.I.), Waxman Cancer Research Foundation (S.I.), US–Israel Binational Science Foundation, Israeli health ministry ERA-NET program (#CANCER11-FP-127 to S.I.), Hans Neufeld Stiftung, the International Collaboration Grant from the Jacki and Bruce Barron Cancer Research Scholars’ Program, a partnership of the Israel Cancer Research Fund and City of Hope (S.I. grants # 00161), the Nevzlin Genomic Center for Precision Medicine in Schneider Children’s Medical Center of Israel, The European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No 813091 (S.I.) and the Israel Childhood Cancer Foundation (S.I.). I.G. was partially supported by Israeli ministry of Immigrant Absorption.info:eu-repo/semantics/publishedVersio

    ZSWIM7 Is associated with human female meiosis and familial primary ovarian insufficiency

    Get PDF
    Background Primary ovarian insufficiency (POI) affects 1% of women and is associated with significant medical consequences. A genetic cause for POI can be found in up to 30% of women, elucidating key roles for these genes in human ovary development. Objective We aimed to identify the genetic mechanism underlying early-onset POI in 2 sisters from a consanguineous pedigree. Methods Genome sequencing and variant filtering using an autosomal recessive model was performed in the 2 affected sisters and their unaffected family members. Quantitative reverse transcriptase PCR (qRT-PCR) and RNA sequencing were used to study the expression of key genes at critical stages of human fetal gonad development (Carnegie Stage 22/23, 9 weeks post conception (wpc), 11 wpc, 15/16 wpc, 19/20 wpc) and in adult tissue. Results Only 1 homozygous variant cosegregating with the POI phenotype was found: a single nucleotide substitution in zinc finger SWIM-type containing 7 (ZSWIM7), NM_001042697.2: c.173C > G; resulting in predicted loss-of-function p.(Ser58*). qRT-PCR demonstrated higher expression of ZSWIM7 in the 15/16 wpc ovary compared with testis, corresponding to peak meiosis in the fetal ovary. RNA sequencing of fetal gonad samples showed that ZSWIM7 has a similar temporal expression profile in the developing ovary to other homologous recombination genes. Main conclusions Disruption of ZSWIM7 is associated with POI in humans. ZSWIM7 is likely to be important for human homologous recombination; these findings expand the range of genes associated with POI in women

    STAG3 truncating variant as the cause of primary ovarian insufficiency

    Get PDF
    Primary ovarian insufficiency (POI) is a distressing cause of infertility in young women. POI is heterogeneous with only a few causative genes having been discovered so far. Our objective was to determine the genetic cause of POI in a consanguineous Lebanese family with two affected sisters presenting with primary amenorrhoea and an absence of any pubertal development. Multipoint parametric linkage analysis was performed. Whole-exome sequencing was done on the proband. Linkage analysis identified a locus on chromosome 7 where exome sequencing successfully identified a homozygous two base pair duplication (c.1947_48dupCT), leading to a truncated protein p.(Y650Sfs*22) in the STAG3 gene, confirming it as the cause of POI in this family. Exome sequencing combined with linkage analyses offers a powerful tool to efficiently find novel genetic causes of rare, heterogeneous disorders, even in small single families. This is only the second report of a STAG3 variant; the first STAG3 variant was recently described in a phenotypically similar family with extreme POI. Identification of an additional family highlights the importance of STAG3 in POI pathogenesis and suggests it should be evaluated in families affected with POI

    A Human IPS Model Implicates Embryonic B-Myeloid Fate Restriction as Developmental Susceptibility to B Acute Lymphoblastic Leukemia-Associated ETV6-RUNX1

    Get PDF
    ETV6-RUNX1 is associated with childhood acute B-lymphoblastic leukemia (cALL) functioning as a first-hit mutation that initiates a clinically silent pre-leukemia in utero. Because lineage commitment hierarchies differ between embryo and adult, and the impact of oncogenes is cell-context dependent, we hypothesized that the childhood affiliation of ETV6-RUNX1 cALL reflects its origins in a progenitor unique to embryonic life. We characterize the first emerging B cells in first-trimester human embryos, identifying a developmentally restricted CD19-IL-7R+ progenitor compartment, which transitions from a myeloid to lymphoid program during ontogeny. This developmental series is recapitulated in differentiating human pluripotent stem cells (hPSCs), thereby providing a model for the initiation of cALL. Genome-engineered hPSCs expressing ETV6-RUNX1 from the endogenous ETV6 locus show expansion of the CD19-IL-7R+ compartment, show a partial block in B lineage commitment, and produce proB cells with aberrant myeloid gene expression signatures and potential: features (collectively) consistent with a pre-leukemic state

    The National Early Warning Score and its subcomponents recorded within ±24 hours of emergency medical admission are poor predictors of hospital-acquired acute kidney injury

    Get PDF
    YesBackground: Hospital-acquired Acute Kidney Injury (H-AKI) is a common cause of avoidable morbidity and mortality. Aim: To determine if the patients’ vital signs data as defined by a National Early Warning Score (NEWS), can predict H-AKI following emergency admission to hospital. Methods: Analyses of emergency admissions to York hospital over 24-months with NEWS data. We report the area under the curve (AUC) for logistic regression models that used the index NEWS (model A0), plus age and sex (A1), plus subcomponents of NEWS (A2) and two-way interactions (A3). Likewise for maximum NEWS (models B0,B1,B2,B3). Results: 4.05% (1361/33608) of emergency admissions had H-AKI. Models using the index NEWS had the lower AUCs (0.59 to 0.68) than models using the maximum NEWS AUCs (0.75 to 0.77). The maximum NEWS model (B3) was more sensitivity than the index NEWS model (A0) (67.60% vs 19.84%) but identified twice as many cases as being at risk of H-AKI (9581 vs 4099) at a NEWS of 5. Conclusions: The index NEWS is a poor predictor of H-AKI. The maximum NEWS is a better predictor but seems unfeasible because it is only knowable in retrospect and is associated with a substantial increase in workload albeit with improved sensitivity.The Health Foundatio
    corecore