41 research outputs found

    A peer-to-peer blockchain based interconnected power system

    Get PDF
    Utilities produce and supply products following local requirements and with the synchronizations which connect subscribers. Harmonics is a power efficiency/quality variable caused by electronic devices that domestic and industrial consumers use. The famous IEEE Standard 519 is maintained to calculate harmonic limits, which ensures power efficiency. In a standard power system, currents and voltages generate pure sine wave signals during regular operations. As harmonics influence the power system, they cause interference in the sine wave signals. So, the best practice method should be used to resolve the harmonics issue. One of the problem-solving techniques of harmonics is the measurement and reduction of harmonics detection, and it uses Fast Fourier Transform (FFT). Therefore, power output should assess in a peer-to-peer Blockchain scheme by measuring and minimizing harmonics detection. This paper uses a Shunt Active Power Filter (SHAPF). It describes the simulation analysis and reduction of harmonics detection in a peer-to-peer interconnected 3-phase power system with the help of an FFT algorithm. This research was carried out to assess the efficiency of the AC signal by collecting, processing, and evaluating power data. Using the shunt active filter, the proposed design outperformed the traditional methods for both six and twelve pulse rectifiers, achieving total harmonic distortion (THD) of only 1.42% and 0.92%, respectively

    A Diamond Shaped Multilevel Inverter With Dual Mode of Operation

    Get PDF
    This study presents a novel multilevel inverter structure that can operate in both switched capacitor and asymmetric DC source modes. In the first mode, it can produce seven-level output voltage employing two switched capacitors and one single DC supply. The five-level output voltage is produced while operating the second mode. The voltage ratio between the input and output voltage for the capacitor mode is 1:3 (triple voltage gain). During the first mode, the capacitor of the inverter is self -balanced whereas the inverter can produce higher voltage output in the DC source mode. The proposed inverter reduces the total standing voltage in both modes of operations as it can generate the output voltage without requiring any additional H-bridge circuit. The feasibility and predominate features of the proposed inverter have been established by comparing with existing topologies in terms of power components count. Results obtained from this study are validated using simulation employing sinusoidal pulse width modulation (SPWM). A hardware prototype has also been developed for further validation

    Glucose level detection using millimetre-wave metamaterial-inspired resonator

    Get PDF
    Millimetre-wave frequencies are promising for sensitive detection of glucose levels in the blood, where the temperature effect is insignificant. All these features provide the feasibility of continuous, portable, and accurate monitoring of glucose levels. This paper presents a metamaterial-inspired resonator comprising five split-rings to detect glucose levels at 24.9 GHz. The plexiglass case containing blood is modelled on the sensor’s surface and the structure is simulated for the glucose levels in blood from 50 mg/dl to 120 mg/dl. The novelty of the sensor is demonstrated by the capability to sense the normal glucose levels at millimetre-wave frequencies. The dielectric characteristics of the blood are modelled by using the Debye parameters. The proposed design can detect small changes in the dielectric properties of blood caused by varying glucose levels. The variation in the transmission coefficient for each glucose level tested in this study is determined by the quality factor and resonant frequency. The sensor presented can detect the change in the quality factor of transmission response up to 2.71/mg/dl. The sensor's performance has also been tested to detect diabetic hyperosmolar syndrome. The sensor showed a linear shift in resonant frequency with the change in glucose levels, and an R2 of 0.9976 was obtained by applying regression analysis. Thus, the sensor can be used to monitor glucose in a normal range as well as at extreme levels

    Constant Temperature Anemometer with Self-Calibration Closed Loop Circuit

    No full text
    In this paper, a Micro-Electro-Mechanical Systems (MEMS) calorimetric sensor with its measurement electronics is designed, fabricated, and tested. The idea is to apply a configurable voltage to the sensitive resistor and measure the current flowing through the heating resistor using a current mirror controlled by an analog feedback loop. In order to cancel the offset and errors of the amplifier, the constant temperature anemometer (CTA) circuit is periodically calibrated. This technique improves the accuracy of the measurement and allows high sensitivity and high bandwidth frequency. The CTA circuit is implemented in a CMOS FD-SOI 28 nm technology. The supply voltage is 1.2 V while the core area is 0.266 mm2. Experimental results demonstrate the feasibility of the MEMS calorimetric sensor for measuring airflow rate. The developed MEMS calorimetric sensor shows a maximum normalized sensitivity of 117 mV/(m/s)/mW with respect to the input heating power and a wide dynamic flow range of 0–26 m/s. The high sensitivity and wide dynamic range achieved by our MEMS flow sensor enable its deployment as a promising sensing node for direct wall shear stress measurement applications

    A chopper negative-R Delta-Sigma ADC for audio MEMS sensors

    No full text
    International audienceThis paper presents a proposed low-noise and high-sensitivity Internet of Thing (IoT) system based on an M&NEMS microphone. The IoT device consists of an M&NEMS resistive accelerometer associated with an electronic readout circuit, which is a silicon nanowire and a Continuous-Time (CT) ΔΣ ADC. The first integrator of the ΔΣ ADC is based on a positive feedback DC-gain enhancement two-stage amplifier due to its high linearity and low-noise operations. To mitigate both the offset and 1/f noise, a suggested delay-time chopper negative-R stabilization technique is applied around the first integrator. A 65-nm CMOS process implements the CT ΔΣ ADC. The supply voltage of the CMOS circuit is 1.2-V while 0.96-mW is the power consumption and 0.1-mm 2 is the silicon area. The M&NEMS microphone and ΔΣ ADC complete circuit are fabricated and measured. Over a working frequency bandwidth of 20-kHz, the measurement results of the proposed IoT system reach a signal to noise ratio (SNR) of 102.8-dB. Moreover, it has a measured dynamic range (DR) of 108-dB and a measured signal to noise and distortion ratio (SNDR) of 101.3-dB

    Low-noise and low power photoreceptor using split-length MSOFET

    No full text
    International audienc

    Design of low noise and low power photo-receptor for CMOS vision sensor

    No full text
    International audienc
    corecore