123 research outputs found

    Quality and productivity drive innovation and improvement at United Technologies Aerospace Operations, Inc.

    Get PDF
    Quality and innovation are the hallmarks of the national space program. In programs that preceded the Shuttle Program the emphasis was on meeting the risks and technical challenges of space with safety, quality, reliability, and success. At United Technologies Aerospace Operations, Inc. (UTAO), the battle has developed along four primary fronts. These fronts include programs to motivate and reward people, development and construction of optimized processes and facilities, implementation of specifically tailored management systems, and the application of appropriate measurement and control systems. Each of these initiatives is described. However, to put this quality and productivity program in perspective, UTAO and its role in the Shuttle Program are described first

    Developing fencing policies in dryland ecosystems

    Get PDF
    The daily energy requirements of animals are determined by a combination of physical and physiological factors, but food availability may challenge the capacity to meet nutritional needs. Western gorillas (Gorilla gorilla) are an interesting model for investigating this topic because they are folivore-frugivores that adjust their diet and activities to seasonal variation in fruit availability. Observations of one habituated group of western gorillas in Bai-Hokou, Central African Republic (December 2004-December 2005) were used to examine seasonal variation in diet quality and nutritional intake. We tested if during the high fruit season the food consumed by western gorillas was higher in quality (higher in energy, sugar, fat but lower in fibre and antifeedants) than during the low fruit season. Food consumed during the high fruit season was higher in digestible energy, but not any other macronutrients. Second, we investigated whether the gorillas increased their daily intake of carbohydrates, metabolizable energy (KCal/g OM), or other nutrients during the high fruit season. Intake of dry matter, fibers, fat, protein and the majority of minerals and phenols decreased with increased frugivory and there was some indication of seasonal variation in intake of energy (KCal/g OM), tannins, protein/fiber ratio, and iron. Intake of non-structural carbohydrates and sugars was not influenced by fruit availability. Gorillas are probably able to extract large quantities of energy via fermentation since they rely on proteinaceous leaves during the low fruit season. Macronutrients and micronutrients, but not digestible energy, may be limited for them during times of low fruit availability because they are hind-gut fermenters. We discuss the advantages of seasonal frugivores having large dietary breath and flexibility, significant characteristics to consider in the conservation strategies of endangered species

    Coastal upwelling in the Rias Bajas, NW Spain: Contrasting the benthic regimes of the Rias de Arosa and de Muros

    Get PDF
    Nutrient-rich North Atlantic water upwells off the NW coast of Spain and intermittently intrudes into the rias, coastal embayments, by displacement during periods of offshore winds. High primary production associated with the upwelling supports an intensive raft culture of the edible mussel, Mytilus edulis. This culture is most intensive (ca. 2000 rafts) in the Ria de Arosa, and results in one of the highest protein yields per unit area on earth...

    The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory

    Get PDF
    The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25 pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m, over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47"x47", resolved into 5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral resolution of ~175km/s. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the Performance Verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions

    Asteroseismology of the β Cephei star ν Eridani - III. Extended frequency analysis and mode identification

    Full text link
    Using the large photometric and spectroscopic data sets of the ν Eridani multisite campaign given in our two recent papers (Aerts et al. and Handler et al.), we present an extended frequency analysis and a photometric mode identification. For the extended frequency analysis, we used an improved radial velocity time series, the second-moment time series and the line profiles themselves. In the radial velocity time series, we can now detect an additional pulsation frequency that was previously only found in photometric time series. We also report several new candidate pulsation frequencies. For seven frequencies, the photometric mode identification indicates that they belong to a radial mode and six dipole modes, and for three frequencies the degree l could not be unambiguously determined. We also placed ν Eri in the Hertzsprung-Russell diagram by determining T[SUB]eff[/SUB] using Geneva plus Strömgren photometric calibrations, spectral energy distribution fitting, by non-local thermodynamic equilibrium hydrogen, helium and silicon line profile fitting, and by determining log(L/L[SUB]solar[/SUB]) using the Hipparcos parallax and an Hβ calibration.Peer reviewe

    Modern insulation materials for warming of walls

    Get PDF
    Biodiversity hotspots understandably attract considerable conservation attention. However, deserts are rarely viewed as conservation priority areas, due to their relatively low productivity, yet these systems are home to unique species, adapted to harsh and highly variable environments. While global attention has been focused on hotspots, the world's largest tropical desert, the Sahara, has suffered a catastrophic decline in megafauna. Of 14 large vertebrates that have historically occurred in the region, four are now extinct in the wild, including the iconic scimitar-horned oryx (Oryx dammah). The majority has disappeared from more than 90% of their Saharan range, including addax (Addax nasomaculatus), dama gazelle (Nanger dama) and Saharan cheetah (Acinonyx jubatus hecki) - all now on the brink of extinction. Greater conservation support and scientific attention for the region might have helped to avert these catastrophic declines. The Sahara serves as an example of a wider historical neglect of deserts and the human communities who depend on them. The scientific community can make an important contribution to conservation in deserts by establishing baseline information on biodiversity and developing new approaches to sustainable management of desert species and ecosystems. Such approaches must accommodate mobility of both people and wildlife so that they can use resources most efficiently in the face of low and unpredictable rainfall. This is needed to enable governments to deliver on their commitments to halt further degradation of deserts and to improve their status for both biodiversity conservation and human well-being. Only by so-doing will deserts be able to support resilient ecosystems and communities that are best able to adapt to climate change. © 2013 John Wiley & Sons Ltd

    [18F]FDG-6-P as a novel in vivo tool for imaging staphylococcal infections

    Get PDF
    Background Management of infection is a major clinical problem. Staphylococcus aureus is a Gram-positive bacterium which colonises approximately one third of the adult human population. Staphylococcal infections can be life-threatening and are frequently complicated by multi-antibiotic resistant strains including methicillin-resistant S. aureus (MRSA). Fluorodeoxyglucose ([18F]FDG) imaging has been used to identify infection sites; however, it is unable to distinguish between sterile inflammation and bacterial load. We have modified [18F]FDG by phosphorylation, producing [18F]FDG-6-P to facilitate specific uptake and accumulation by S. aureus through hexose phosphate transporters, which are not present in mammalian cell membranes. This approach leads to the specific uptake of the radiopharmaceutical into the bacteria and not the sites of sterile inflammation. Methods [18F]FDG-6-P was synthesised from [18F]FDG. Yield, purity and stability were confirmed by RP-HPLC and iTLC. The specificity of [18F]FDG-6-P for the bacterial universal hexose phosphate transporter (UHPT) was confirmed with S. aureus and mammalian cell assays in vitro. Whole body biodistribution and accumulation of [18F]FDG-6-P at the sites of bioluminescent staphylococcal infection were established in a murine foreign body infection model. Results In vitro validation assays demonstrated that [18F]FDG-6-P was stable and specifically transported into S. aureus but not mammalian cells. [18F]FDG-6-P was elevated at the sites of S. aureus infection in vivo compared to uninfected controls; however, the increase in signal was not significant and unexpectedly, the whole-body biodistribution of [18F]FDG-6-P was similar to that of [18F]FDG. Conclusions Despite conclusive in vitro validation, [18F]FDG-6-P did not behave as predicted in vivo. However at the site of known infection, [18F]FDG-6-P levels were elevated compared with uninfected controls, providing a higher signal-to-noise ratio. The bacterial UHPT can transport hexose phosphates other than glucose, and therefore alternative sugars may show differential biodistribution and provide a means for specific bacterial detection

    8--13 um spectroscopy of YSOs: Evolution of the silicate feature

    Full text link
    In order to investigate possible connections between dust processing and disk properties, 8--13 um spectra of 34 young stars, with a range of circumstellar environments and spectral types A to M, were obtained using the Long Wavelength Spectrometer at the W. M. Keck Observatory. The broad 9.7 um amorphous silicate feature which dominates this wavelength regime evolves from absorption in young, embedded sources, to emission in optically revealed stars, and to complete absence in older debris disk systems for both low- and intermediate-mass stars. The peak wavelength and FWHM are centered about 9.7 and ~2.3 um, corresponding to amorphous olivine, with a larger spread in FWHM for embedded sources and in peak wavelength for disks. In a few of our objects that have been previously identified as class I low-mass YSOs, the observed silicate feature is complex, with absorption near 9.5 um and emission peaking around 10 um. Although most of the emission spectra show broad classical features attributed to amorphous silicates, variations in the shape/strength may be linked to dust processing, including grain growth and/or silicate crystallization. We study quantitatively the evidence for evolutionary trends in the 8--13 um spectra through a variety of spectral shape diagnostics. Based on the lack of correlation between these diagnostics and broad-band infrared luminosity characteristics for silicate emission sources, we conclude that although spectral signatures of dust processing are present, they can not be connected clearly to disk evolutionary stage (for optically thick disks) or optical depth (for optically thin disks). The diagnostics of silicate absorption features (other than the central wavelength of the feature), however, are tightly correlated with optical depth.Comment: 27 pages, 13 figures, accepted for publication by ApJ, formatted with emulateapj using revtex4 v4.
    corecore