5,977 research outputs found
Functional renormalization group study of the Anderson--Holstein model
We present a comprehensive study of the spectral and transport properties in
the Anderson--Holstein model both in and out of equilibrium using the
functional renormalization group (FRG). We show how the previously established
machinery of Matsubara and Keldysh FRG can be extended to include the local
phonon mode. Based on the analysis of spectral properties in equilibrium we
identify different regimes depending on the strength of the electron--phonon
interaction and the frequency of the phonon mode. We supplement these
considerations with analytical results from the Kondo model. We also calculate
the non-linear differential conductance through the Anderson--Holstein quantum
dot and find clear signatures of the presence of the phonon mode.Comment: 19 pages, 8 figure
Nonequilibrium functional renormalization group for interacting quantum systems
We propose a nonequilibrium version of functional renormalization within the
Keldysh formalism by introducing a complex valued flow parameter in the Fermi
or Bose functions of each reservoir. Our cutoff scheme provides a unified
approach to equilibrium and nonequilibrium situations. We apply it to
nonequilibrium transport through an interacting quantum wire coupled to two
reservoirs and show that the nonequilibrium occupation induces new power law
exponents for the conductance.Comment: 5 pages, 2 figures; published versio
Comparative study of theoretical methods for nonequilibrium quantum transport
We present a detailed comparison of three different methods designed to
tackle nonequilibrium quantum transport, namely the functional renormalization
group (fRG), the time-dependent density matrix renormalization group (tDMRG),
and the iterative summation of real-time path integrals (ISPI). For the
nonequilibrium single-impurity Anderson model (including a Zeeman term at the
impurity site), we demonstrate that the three methods are in quantitative
agreement over a wide range of parameters at the particle-hole symmetric point
as well as in the mixed-valence regime. We further compare these techniques
with two quantum Monte Carlo approaches and the time-dependent numerical
renormalization group method.Comment: 19 pages, 7 figures; published versio
Exact results for nonlinear ac-transport through a resonant level model
We obtain exact results for the transport through a resonant level model
(noninteracting Anderson impurity model) for rectangular voltage bias as a
function of time. We study both the transient behavior after switching on the
tunneling at time t = 0 and the ensuing steady state behavior. Explicit
expressions are obtained for the ac-current in the linear response regime and
beyond for large voltage bias. Among other effects, we observe current ringing
and PAT (photon assisted tunneling) oscillations.Comment: 7 page
Sklerodermie und fibrosierende Erkrankungen
Zusammenfassung: Bei der Sklerodermie und anderen fibrosierenden Erkrankungen wie den Fibromatosen, der Arthrofibrose und dem M.Ormond liegt eine Fibroblastenproliferation mit mehr oder weniger starker Begleitentzündung vor. Bei der Sklerodermie kommt es zu einer Hautfibrose mit obstruktiver Vaskulopathie. Sklerodermiforme Hautveränderungen werden auch im Rahmen der "Graft-versus-Host-Disease" nach hämatopoetischer Stammzelltransplantation, bei Malignomen und nach Applikation bestimmter Medikamente beobachtet. Die Fibromatosen werden in eine unter der Hautoberfläche gelegene Gruppe und die tief im Körper lokalisierten Desmoide unterteilt. Im Rahmen des M.Ormond findet sich eine Aortitis mit Ausdehnung der fibrosierenden Entzündung in den Retroperitonealraum. Die Bedeutung der histopathologischen Diagnostik bei fibrosierenden Erkrankungen ist unterschiedlich und reicht von einer erkrankungsbestätigenden bis hin zu einer erkankungsdefinierenden Diagnos
A renormalization group approach to time dependent transport through correlated quantum dots
We introduce a real time version of the functional renormalization group
which allows to study correlation effects on nonequilibrium transport through
quantum dots. Our method is equally capable to address (i) the relaxation out
of a nonequilibrium initial state into a (potentially) steady state driven by a
bias voltage and (ii) the dynamics governed by an explicitly time-dependent
Hamiltonian. All time regimes from transient to asymptotic can be tackled; the
only approximation is the consistent truncation of the flow equations at a
given order. As an application we investigate the relaxation dynamics of the
interacting resonant level model which describes a fermionic quantum dot
dominated by charge fluctuations. Moreover, we study decoherence and relaxation
phenomena within the ohmic spin-boson model by mapping the latter to the
interacting resonant level model
Charge transport through single molecules, quantum dots, and quantum wires
We review recent progresses in the theoretical description of correlation and
quantum fluctuation phenomena in charge transport through single molecules,
quantum dots, and quantum wires. A variety of physical phenomena is addressed,
relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and
spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical
many-body methods to treat correlation effects, quantum fluctuations,
nonequilibrium physics, and the time evolution into the stationary state of
complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog
Recommended from our members
Symmetry breaking in the female germline cyst.
In mammals and flies, only one cell in a multicellular female germline cyst becomes an oocyte, but how symmetry is broken to select the oocyte is unknown. Here, we show that the microtubule (MT) minus end-stabilizing protein Patronin/CAMSAP marks the future Drosophila oocyte and is required for oocyte specification. The spectraplakin Shot recruits Patronin to the fusome, a branched structure extending into all cyst cells. Patronin stabilizes more MTs in the cell with the most fusome material. Our data suggest that this weak asymmetry is amplified by Dynein-dependent transport of Patronin-stabilized MTs. This forms a polarized MT network, along which Dynein transports oocyte determinants into the presumptive oocyte. Thus, Patronin amplifies a weak fusome anisotropy to break symmetry and select one cell to become the oocyte
Multimodality Treatment for Early-Stage Hepatocellular Carcinoma: A Bridging Therapy for Liver Transplantation
Purpose: To evaluate the efficiency of a multimodality approach consisting of transcatheter arterial chemoembolization (TACE) and radiofrequency ablation (RFA) as bridging therapy for patients with hepatocellular carcinoma (HCC) awaiting orthotopic liver transplantation (OLT) and to evaluate the histopathological response in explant specimens. Materials and Methods: Between April 2001 and November 2011, 36 patients with 50 HCC nodules (1.4-5.0 cm, median 2.8 cm) on the waiting list for liver transplantation were treated by TACE and RFA. The drop-out rate during the follow-up period was recorded. The local efficacy was evaluated by histopathological examination of the explanted livers. Results: During a median follow-up time of 29 (4.0-95.3) months the cumulative drop-out rate for the patients on the waiting list was 0, 2.8, 5.5, 11.0, 13.9 and 16.7% at 3, 6, 12, 24, 36 and 48 months, respectively. 16 patients (with 26 HCC lesions) out of 36(44.4%) were transplanted by the end of study with a median waiting list time of 13.7 (2.5-37.8) months. The histopathological examination of the explanted specimens revealed a complete necrosis in 20 of 26 HCCs (76.9%), whereas 6 (23.1%) nodules showed viable residual tumor tissue. All transplanted patients are alive at a median time of 29.9 months. Imaging correlation showed 100% specificity and 66.7% sensitivity for the depiction of residual or recurrent tumor. Conclusion: We conclude that TACE.combined with RFA could provide an effective treatment to decrease the drop-out rate from the OLT waiting list for HCC patients. Furthermore, this combination therapy results in high rates of complete tumor necrosis as evaluated in the histopathological analysis of the explanted livers. Further randomized trials are needed to demonstrate if there is a benefit in comparison with a single-treatment approach. copyright (C) 2012 S. Karger AG, Base
- …