5,427 research outputs found

    ROTUNDE - A Smart Meeting Cinematography Initiative: Tools, Datasets, and Benchmarks for Cognitive Interpretation and Control

    Full text link
    We construe smart meeting cinematography with a focus on professional situations such as meetings and seminars, possibly conducted in a distributed manner across socio-spatially separated groups. The basic objective in smart meeting cinematography is to interpret professional interactions involving people, and automatically produce dynamic recordings of discussions, debates, presentations etc in the presence of multiple communication modalities. Typical modalities include gestures (e.g., raising one's hand for a question, applause), voice and interruption, electronic apparatus (e.g., pressing a button), movement (e.g., standing-up, moving around) etc. ROTUNDE, an instance of smart meeting cinematography concept, aims to: (a) develop functionality-driven benchmarks with respect to the interpretation and control capabilities of human-cinematographers, real-time video editors, surveillance personnel, and typical human performance in everyday situations; (b) Develop general tools for the commonsense cognitive interpretation of dynamic scenes from the viewpoint of visuo-spatial cognition centred perceptual narrativisation. Particular emphasis is placed on declarative representations and interfacing mechanisms that seamlessly integrate within large-scale cognitive (interaction) systems and companion technologies consisting of diverse AI sub-components. For instance, the envisaged tools would provide general capabilities for high-level commonsense reasoning about space, events, actions, change, and interaction.Comment: Appears in AAAI-2013 Workshop on: Space, Time, and Ambient Intelligence (STAMI 2013

    Global detection and analysis of coastline associated rainfall using an objective pattern recognition technique

    Get PDF
    Coastally associated rainfall is a common feature especially in tropical and subtropical regions. However, it has been difficult to quantify the contribution of coastal rainfall features to the overall local rainfall. We develop a novel technique to objectively identify precipitation associated with land-sea interaction and apply it to satellite based rainfall estimates. The Maritime Continent, the Bight of Panama, Madagascar and the Mediterranean are found to be regions where land-sea interactions plays a crucial role in the formation of precipitation. In these regions ≈\approx 40% to 60% of the total rainfall can be related to coastline effects. Due to its importance for the climate system, the Maritime Continent is a particular region of interest with high overall amounts of rainfall and large fractions resulting from land-sea interactions throughout the year. To demonstrate the utility of our identification method we investigate the influence of several modes of variability, such as the Madden-Julian-Oscillation and the El Ni\~no Southern Oscillation, on coastal rainfall behavior. The results suggest that during large scale suppressed convective conditions coastal effects tend modulate the rainfall over the Maritime Continent leading to enhanced rainfall over land regions compared to the surrounding oceans. We propose that the novel objective dataset of coastally influenced precipitation can be used in a variety of ways, such as to inform cumulus parametrization or as an additional tool for evaluating the simulation of coastal precipitation within weather and climate models

    Hitchcock's (2001) treatment of singular and general causation

    Get PDF
    Hitchcock (2001a) argues that the distinction between singular and general causation conflates the two distinctions ‘actual causation vs. causal tendencies' and ‘wide vs. narrow causation'. Based on a recent regularity account of causation I will show that Hitchcock's introduction of the two distinctions is an unnecessary multiplication of causal concept

    Role of anisotropy for protein-protein encounter

    Full text link
    Protein-protein interactions comprise both transport and reaction steps. During the transport step, anisotropy of proteins and their complexes is important both for hydrodynamic diffusion and accessibility of the binding site. Using a Brownian dynamics approach and extensive computer simulations, we quantify the effect of anisotropy on the encounter rate of ellipsoidal particles covered with spherical encounter patches. We show that the encounter rate kk depends on the aspect ratios ξ\xi mainly through steric effects, while anisotropic diffusion has only a little effect. Calculating analytically the crossover times from anisotropic to isotropic diffusion in three dimensions, we find that they are much smaller than typical protein encounter times, in agreement with our numerical results.Comment: 4 pages, Revtex with 3 figures, to appear as a Rapid Communication in Physical Review

    Near-optimal adjacency labeling scheme for power-law graphs

    Get PDF
    An adjacency labeling scheme is a method that assigns labels to the vertices of a graph such that adjacency between vertices can be inferred directly from the assigned label, without using a centralized data structure. We devise adjacency labeling schemes for the family of power-law graphs. This family that has been used to model many types of networks, e.g. the Internet AS-level graph. Furthermore, we prove an almost matching lower bound for this family. We also provide an asymptotically near- optimal labeling scheme for sparse graphs. Finally, we validate the efficiency of our labeling scheme by an experimental evaluation using both synthetic data and real-world networks of up to hundreds of thousands of vertices
    • …
    corecore