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Abstract
An adjacency labeling scheme labels the n nodes of a graph with bit strings in a way that allows,
given the labels of two nodes, to determine adjacency based only on those bit strings. Though
many graph families have been meticulously studied for this problem, a non-trivial labeling
scheme for the important family of power-law graphs has yet to be obtained. This family is
particularly useful for social and web networks as their underlying graphs are typically modelled
as power-law graphs. Using simple strategies and a careful selection of a parameter, we show
upper bounds for such labeling schemes of Õ( α

√
n) for power law graphs with coefficient α, as

well as nearly matching lower bounds. We also show two relaxations that allow for a label of
logarithmic size, and extend the upper-bound technique to produce an improved distance labeling
scheme for power-law graphs.

1998 ACM Subject Classification E.1 Distributed data structures

Keywords and phrases Labeling schemes, Power-law graphs
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1 Introduction

A body of work on large, real-world networks deals with the difficulties of storing them and
effectively resolving queries on them; examples of techniques are compression [14, 13] and
dissemination of the underlying graphs of these networks over several machines [35, 52, 54].
A different approach to storing information about the graph is to disseminate the structural
information of the graph to its vertices and store it locally. This peer-to-peer strategy allows
inferring the graph’s local topology using only local information stored in each vertex without
using costly access to large, global data structures. In particular, it can be useful to address
privacy concerns and ensure a high survivability rate [18].

We posit that a useful tool for such a peer-to-peer strategy is the notion of a labeling
scheme: an algorithm that assigns a bit string–a label–to each vertex so that a query between

∗ The full version of this paper is available at http://arxiv.org/abs/1502.03971.
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any two vertices can be deduced solely from their respective labels. Labeling schemes are
extremely well-studied in the algorithmic literature [8, 17, 20, 27, 32, 30, 37, 38, 40, 41, 49];
the main objective is to minimize the maximum label size: the maximum number of bits used
in a label of any vertex. Among their applications are XML search engines [25], mapping
services [1], and internet routing [43].

One class of graphs extensively used for modelling real-world networks is power-law graphs:
roughly, n-vertex graphs where the number of vertices of degree k is proportional to n/kα for
some positive α. Power-law graphs (also called scale-free graphs in the literature) have been
used to model the Internet AS-level graph [50, 4], and many other types of network (see, e.g.,
[24, 47] for overviews). The adequacy of fit of power-law graph models to actual data, as well
as the empirical correctness of the conjectured mechanisms giving rise to power-law behaviour,
have been subject to criticism (see, e.g., [2, 24]). In spite of such criticism, and because their
degree distribution affords a reasonable approximation of the degree distribution of many
networks, the class of power-law graphs remains a popular tool in network modelling. In this
paper, we perform the first theoretical and practical study of adjacency labeling schemes
for classes of graphs whose statistical properties–in particular their degree distribution–more
closely resemble that of real-world networks.

1.1 Our contributions
Our contributions are:

A discrete and simple characterisation of power-law graphs

An n-vertex graph is power-law if the number of its vertices of degree k is proportional to
n/kα for some positive α. To solidify this somewhat vague definition, numerous probabilistic
and deterministic definitions of power-law graphs are given in the literature. In Sec. 3, we
define and prove useful properties for two simple families of graphs, Ph and Pl, where Ph
contains and Pl is contained by the standard definitions of power-law graphs in the literature,
including recent ones [16]. We use Ph and Pl to study upper and lower bounds respectively.

An O( α
√

n(log n)1−1/α) adjacency labeling scheme

In Sec. 4, we describe our labeling scheme, which is based on two ideas: (i) a labeling strategy
that partitions the vertices of G into high (“fat”) and low degree (“thin”) vertices based on a
threshold degree, and (ii) a threshold prediction that depends only on the coefficient α of a
power-law curve fitted to the degree distribution of G. These ideas are illustrated in Figure 1.
Using the same ideas, we get an asymptotically near-tight O(

√
n logn) adjacency labeling

scheme for sparse graphs. As real-world power-law graphs have 2 ≤ α ≤ 3 and rarely exceed
1010 vertices, this implies labels of the order of 104− 105 bits. That, and the simplicity of our
labeling scheme suggests that our labeling schemes may be appealing in practice. To stress
this point, we offer an experimental evaluation of our labeling scheme in the full version of
the paper.

A lower bound of Ω( α
√

n) for any adjacency labeling scheme

In Sec. 5, We use our restrictive subclass of power-law graphs and show that it requires label
size Ω( α

√
n) for n-vertex graphs. This lower bound shows that our upper bound above is

asymptotically optimal, bar a (logn)1−1/α factor. By the connections between adjacency
labeling schemes and universal graphs, we also obtain upper and lower bounds for induced
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which fat (black) nodes do not store adjacency
to thin (white) nodes

Figure 1 Two illustrations of the main idea.

universal graphs for power-law graphs. We also show, in Sec. 6, two scenarios in which this
lower bound can be bypassed.

A o(n) distance labeling scheme

In Sec. 7, we demonstrate the usefulness of our strategy to arrive at a o(n) distance labeling
scheme for power-law graphs. Our labeling scheme is designed to outperform competing
labeling schemes for small distances, in accordance with Chung and Lu’s findings [22] on the
small expected diameter of power-law graphs.

1.2 Related work
Adjacency labeling schemes for key graph families are by now well understood. General
graphs require a label size of n/2 + O(1) [48, 8], while trees, planar graphs, and bounded
degree graphs enjoy labels of logarithmic size [9, 30, 3]. Adjacency labeling schemes are also
tightly coupled with the graph-theoretic concept of induced universal graphs, in which one
aims to find the smallest N where there exist a graph of N vertices which contains all graphs
of a particular graph family Fn of n vertices as induced subgraphs. It was shown [36] that
an f(n) logn adjacency labeling scheme for Fn constructs an induced universal graph for
this family of 2f(n) vertices. In the context of sparse graphs, a body of work on universal
graphs1 for this family was investigated both by Babai et al. [11] and by Alon and Asodi [5].

Routing labeling schemes for power-law graphs have been investigated by Brady and
Cowen [17], and by Chen et al. [21]. Labeling schemes for properties other than adjacency
have been investigated for various classes of graphs, e.g., distance [32], and flow [37]. Dynamic
labeling schemes were studied by Korman and Peleg [38, 40, 41] and recently by Dahlgaard et.
al [27]. Experimental evaluations for some labeling schemes for various properties on general
graphs have been performed by Caminiti et. al [20], Fischer [29] and Rotbart et. al [49].

In the context of distributed graph computing systems, a somewhat related paradigm
of computation is the vertex centric computing model “think like a vertex”. In this model
each vertex exchanges messages only with nearby vertices, to improve locality and simplify
the design and implementation of such systems. Among the numerous systems proposed are
Pregel [45], Power-Graph [35] and GraphLab [44]. For a recent survey on the topic see [46].

1 A graph that contains each graph from the graph family as a subgraph, not necessarily induced.

ICALP 2016
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2 Preliminaries

Throughout the paper we consider n-vertex, undirected graphs. For a real c > 0, a graph
is c-sparse if it has at most cn edges and sparse if it is c-sparse for some constant c. For
0 < c ≤ n − 1, the set of c-sparse graphs with n vertices is denoted by Sc,n. If F is a set
of graphs, Fn denotes the subset of graphs in F having exactly n vertices. The degree of a
vertex v in a graph is denoted by ∆(v), and for non-negative integers k, the set of vertices in
a graph G of degree k is denoted by Vk. The length of a binary string x ∈ {0, 1}∗ is denoted
by |x|.

Let F be a set of graphs. An adjacency labeling scheme (from hereon just labeling scheme)
for F is a pair consisting of an encoder and a decoder. The encoder is an algorithm that
receives G ∈ F as input and outputs a bit string L(v) ∈ {0, 1}∗, called the label of v, for
each vertex v in G. The decoder is an algorithm that receives any two labels L(v),L(u)
as input and outputs true if u and v are adjacent in G and false otherwise. Note that
the graph G is not an input to the decoder. The size of a labeling scheme is the map
size : N −→ N such that size(n) is the maximum length of any label assigned by the encoder
to any vertex in any graph G ∈ Fn. The degree distribution of a graph G = (V,E) is the
mapping ddistG(k) : N0 −→ Q defined by ddistG(k) := |Vk|

n .

3 Defining Power-Law Graphs

In the literature power-law graphs are usually defined as the class of n vertex graphs G such
that ddistG(k) is proportional to k−α for some real number α > 1. Ideally, and ignoring
rounding, ddistG(k) = Ck−α for all k for constant C. As the degree distribution of a
graph must be a probability distribution, we have

∑∞
k=1 Ck

−α = C
∑∞
k=1 k

−α = 1, hence
C = 1/ζ(α) where ζ is the Riemann zeta function. However, in the literature, concessions
are usually made that relax the restrictions on ddistG(k), for example that the power-law
property need only hold for high-degree vertices (“above a cutoff”), or that ddistG(k) is only
approximately equal to Ck−α, with some approximation error that falls off with n. To ensure
that our results hold for all these variations of power-law graphs, we define two families of
graphs Ph and Pl with Pl ( Ph. Family Ph is rich enough to contain the graphs whose
degree distribution is approximately, or perfectly, power-law distributed, and our upper
bound on the label size for our labeling scheme holds for any graph in Ph. Family Pl is used
to show our lower bound and is restrictive enough that most definitions of power-law graph
occurring in the literature will contain it.

In the following, let i1 = Θ( α
√
n) be the smallest integer such that bCn/iα1 c ≤ 1, and let

C ′ ≥ ( C
α−1 + i1

α
√
n

+ 5)α + C
α−1 be a constant; we shall use C ′ in the remainder of the paper.

I Definition 1. Let α > 1 be a real number and let χ : N→ N be a function. Ph,χ,α is the
family of graphs G such that if n = |V (G)| then for all integers k between χ(n) and n− 1,∑n−1
i=k |Vi| ≤ C ′(

n
kα−1 ). We shall usually suppress χ and α, writing merely Ph.

The function χ captures the notion of a cutoff as defined in [24, Sec. 3.1]; the intuition is
that for an n-vertex graph the power-law distribution need only apply for nodes of degree
higher than χ(n), rather than for all degrees. Setting χ(n) = 1 corresponds to the case where
the entire range of degrees follows a power-law distribution, hence even for small values of
χ(n), Ph morally contains all graphs with power-law degree distribution. We will later prove
upper bounds that hold for all χ bounded from above by some function; in particular for the
upper bound for adjacency labeling schemes, the bound holds for χ(n) as high as α

√
n/ logn.
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The class Pl contains graphs where the number of vertices of degree k must be C n
kα

rounded either up or down and the number of vertices of degree k is non-increasing with k.
Note that the function k 7→ C 1

kα is strictly decreasing.

I Definition 2. Let α > 1 be a real number and let C = 1/ζ(α) where ζ is the Riemann
zeta function. Pl,α is the set of graphs G = (V,E) such that
1. bCnc − i1 − 1 ≤ |V1| ≤ dCne,
2. bC n

2α c ≤ |V2| ≤ dC n
2α e+ 1,

3. for every i with 3 ≤ i ≤ n: |Vi| ∈ {bC n
iα c, dC

n
iα e}, and

4. for every i with 2 ≤ i ≤ n− 1: |Vi| ≥ |Vi+1|.
We usually suppress α, writing just Pl.

Note that we allow slightly more noise in the sizes of V1 and V2 than in the remaining sets;
without it, it seems tricky to prove a better lower bound than Ω( α+1

√
n) on label sizes.

We show the following properties of Pl.

I Proposition 1. The maximum degree in an n-vertex graph in Pl is at most
(

C
α−1 + 2

)
α
√
n+

i1 + 3 = Θ( α
√
n).

Proof. Let n > 0 be an integer and let k′ = b α
√
nc. Furthermore, let Sk′ =

∑k′

i=1 |Vi|, that is
Sk′ is the number of vertices of degree at most k′. Let S−k′ = (

∑k′

i=1bCni−αc)− i1 − 1. Then
Sk′ ≥ S−k′ . We now bound S−k′ from below. For every i with 1 ≤ i ≤ k′,

S−k′ + k′ = −i1 − 1 +
k′∑
i=1

(⌊
Cni−α

⌋
+ 1
)
≥ −i1 − 1 +

k′∑
i=1

Cni−α = −i1 − 1 + Cn

k′∑
i=1

i−α

≥ n

(
1− C

∞∑
i=k′+1

i−α

)
− i1 − 1 ≥ n

(
1− C

∫ ∞
k′

x−αdx

)
− i1 − 1

= n

(
1− C

[
1

α− 1x
−α+1

]k′
∞

)
− i1 − 1 = n

(
1− C

α− 1
(
d α
√
ne
)−α+1

)
− i1 − 1

≥ n
(

1− C

α− 1
(
α
√
n
)−α+1

)
− i1 − 1 = n− Cn

α− 1n
−1+ 1

α − i1 − 1

= n− C

α− 1
α
√
n− i1 − 1,

giving Sk′ ≥ S−k′ ≥ n−
C
α−1

α
√
n−d α

√
ne−i1−1. There are thus at most C

α−1
α
√
n+b α

√
nc+i1+1

vertices of degree strictly more than k′ = d α
√
ne. Since for every 1 ≤ i ≤ n− 1: |Vi| ≥ |Vi+1|,

it follows that the maximum degree of any graph in Pl is at most
(

C
α−1 + 2

)
α
√
n+ i1 + 3. J

I Proposition 2. For α > 2, all graphs in Pl are sparse.

Proof. By Proposition 1, the maximum degree of an n-vertex graph in Pl graph is at most
k′ ,

(
C
α−1 + 2

)
α
√
n+ i1 + 3, whence the total number of edges is at most 1

2
∑k′

k=1 k|Vk|. By
definition, |Vk| ≤ dCnkα e ≤

Cn
kα + 1 for k 6= 2 and |V2| ≤ dCn2α e+ 1, and thus

1
2

k′∑
k=1

k|Vk| ≤ 1 + 1
2

k′∑
k=1

k

(
Cn

kα
+ 1
)
≤ 1 + k′(k′ + 1)

4 + Cn

∞∑
k=1

k−α+1

= O(n2/α) + Cnζ(α− 1) = O(n). J

ICALP 2016
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I Proposition 3. For any χ and α > 1, Pl,α ⊆ Ph,χ,α.

Proof. Let d = b( C
α−1 + 2) α

√
n+ i1 + 3c. For any graph in Pl with n vertices and for any k,

|Vk| ≤ Ck−αn+ 1 and by Proposition 1, |Vk| = 0 when k > d.
Let k be an arbitrary integer between χ(n) and n− 1. We need to show that

∑n−1
i=k |Vi| ≤

C ′( n
kα−1 ). It suffices to show this for k ≤ d. We have:

n−1∑
i=k
|Vi| ≤

d∑
i=k

(Ci−αn+ 1) = d− k + 1 + Cn

d∑
i=k

i−α

≤
(

C

α− 1 + i1
α
√
n

+ 5
)

α
√
n+ Cn

∫ d

k

x−αdx

≤
(

C

α− 1 + i1
α
√
n

+ 5
)

α
√
n+ Cn

[
1

α− 1x
−α+1

]k
∞

≤
((

C

α− 1 + i1
α
√
n

+ 5
)(

α
√
ndα−1

n

)
+ C

α− 1

)
nk−α+1

≤
(

C

α− 1 + i1
α
√
n

+ 5
)(

C

α− 1 + i1
α
√
n

+ 5
)α−1

nk−α+1 +
(

C

α− 1

)
nk−α+1

≤ C ′nk−α+1,

as desired. J

3.1 Comparison to other deterministic models
Numerous probabilistic and deterministic definitions of power-law graphs are given in the
literature. A recent deterministic model, called shifted power-law distribution [28] has recently
proven to capture a vast number of such definitions, both in theory and experimentally in
[16]. We show that our definition of Ph contains graphs that adhere to the model, which is
defined as follows. Let c1 > 0 be a constant. A graph G is power-law bounded for parameters
α > 1 and t ≥ 0 if for every integer d ≥ 0, the number of vertices of G of degree in [2d, 2d+1)
is at most

c1n(t+ 1)α−1
2d+1−1∑
i=2d

(i+ t)−α.

As experimentally verified in [16], the value of t is typically very small. If t = O(1), the
bound above becomes O(n

∑2d+1−1
i=2d i−α). In this case, our family Ph(χ, α) is rich enough to

contain these power-law bounded graphs for sufficiently large C ′ and any choice of χ and
α. This follows since for any power-law bounded graph with n vertices and any integer k
between 1 and n− 1,

∑n−1
i=k |Vi| = O(

∑dlg(n−1)e
d=blg kc n

∑2d+1−1
i=2d i−α) = O( n

kα−1 ). Thus our upper
bound also applies to power-law bounded graphs. It is possible to extend our upper bound to
super-constant t where the bound is stronger the smaller t is; we omit the details. Conversely,
our family Pl is restrictive enough that Pl is contained in the family of power-law bounded
graphs when t = O(1), and the lower bound we derive thus also holds in that setting.

4 The Labeling Schemes

We now construct algorithms for labeling schemes for c-sparse graphs and for the family Ph.
Both labeling schemes partition vertices into thin vertices which are of low degree and fat
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vertices of high degree. The degree threshold for the scheme is the lowest possible degree of a
fat vertex. We start with c-sparse graphs.

I Theorem 3. There is a
√

2cn logn+ 2 logn+ 1 labeling scheme for Sc,n.

Proof. Let G = (V,E) be an n-vertex c-sparse graph. Let τ(n) be the degree threshold for
n-vertex graphs; we choose τ(n) below. Let k denote the number of fat vertices of G, and
assign each fat vertex a unique identifier between 1 and k. Each thin vertex is given a unique
identifier between k + 1 and n.

For a v ∈ V , the first part of the label L(v) is a single bit indicating whether v is thin or
fat followed by a string of logn bits representing its identifier. If v is thin, the last part of
L(v) is the concatenation of the identifiers of the neighbors of v. If v is fat, the last part of
L(v) is a fat bit string of length k where the ith bit is 1 iff v is incident to the (fat) vertex
with identifier i.

Decoding a pair (L(u),L(v)) is straightforward: if one of the vertices, say u, is thin, u
and v are adjacent iff the identifier of v is part of the label of u. If both u and v are fat then
they are adjacent iff the ith bit of the fat bit string of L(u) is 1 where i is the identifier of v.
Both decoding processes can be computed in O(logn) time using standard assumptions.

Since |E| ≤ cn, we have k ≤ 2cn/τ(n). A fat vertex thus has label size 1 + logn+ k ≤
1+logn+2cn/τ(n) and a thin vertex has label size at most 1+logn+τ(n) logn. To minimize
the maximum possible label size, we solve 2cn/x = x logn. Solving this gives x =

√
2cn/ logn

and setting τ(n) = dxe gives a label size of at most 1 + logn + (
√

2cn/ logn + 1) logn ≤
1 + 2 logn+

√
2cn logn. J

By Proposition 2, graphs in Pl are sparse for α > 2. This gives a label size of O(
√
n logn)

with the labeling scheme in Theorem 3. We now show that this label can be significantly
improved, by constructing a labeling scheme for Ph which contains Pl.

I Theorem 4. There is a α
√
C ′n(logn)1−1/α + 2 logn+ 1 labeling scheme for Ph.

Proof. The proof is very similar to that of Theorem 3. We let τ(n) denote the degree threshold.
If we pick τ(n) ≥ α

√
n/ logn then by Definition 1 there are at most C ′n/τ(n)α−1 fat vertices.

Defining labels in the same way as in Theorem 3 gives a label size for thin vertices of at most
1 + logn+ τ(n) logn and a label size for fat vertices of at most 1 + logn+C ′n/τ(n)α−1. We
minimize by solving x logn = C ′n/xα−1, giving x = α

√
C ′n/ logn. Setting τ(n) = dxe gives

a label size of at most α
√
C ′n(logn)1−1/α + 2 logn+ 1. J

4.1 A labeling scheme for random graphs
There are schemes using randomness to “grow” graphs that, with high probability, have an
approximate power-law degree distribution for a range of degrees (see e.g. [23]). For graphs
obtained from such models, their degree sequences are instead probability distributions. We
now show that applying our labeling scheme for Ph to random graphs with the power-law
distribution results in a small expected worst-case label size.

Using the definition of Mitzenmacher [47], a random variable X is said to have the
power-law distribution (w.r.t. α > 1) if

Pr[X ≥ x] ∼ cx−α+1,

for a constant c > 0, i.e., limx→∞ Pr[X ≥ x]/cx−α+1 = 1.
Let ε > 0 be fixed. Consider a graph G picked from a family F of random graphs

whose degree sequences have the power-law distribution. Order the vertices of G arbitrarily

ICALP 2016
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as v1, . . . , vn. For i = 1, . . . , n, let indicator variable Xi be 1 iff vi has degree at least
d = α

√
n/ logn. There is a constant N0 ∈ N (depending on ε) such that if n ≥ N0 then for

all i,

E[Xi] = Pr[Xi = 1] ≤ (1 + ε)cd−α+1.

With the same labeling scheme as for Ph with degree threshold τ(n) = d, denote by En
the expected label size of an n-vertex graph from F . Then for all n ≥ N0,

En =
n∑
x=0

Pr
[

n∑
i=1

Xi = x

]
O((x+ d logn)) = O

(
d logn+ E

[
n∑
i=1

Xi

])

= O

(
d logn+

n∑
i=1

E[Xi]
)

= O
(
d logn+ nd−α+1) = O

(
α
√
n(logn)1−1/α

)
.

Thus, we have:

I Theorem 5. Let F be a family of graphs with degree sequences having the power-law
distribution w.r.t. α > 1. Then there is a labeling scheme for F such that the expected
worst-case label size of any graph G ∈ F is O( α

√
n(logn)1−1/α) where n is the number of

vertices of G.

5 Lower Bounds

We now derive lower bounds for the label size of any labeling schemes for both Sc,n and Pl.
Our proofs rely on Moon’s [48] lower bound of bn/2c bits for labeling scheme for general
graphs. We first show that the upper bound achieved for sparse graphs is close to the best
possible. The following proposition is essentially a more precise version of the lower bound
suggested by Spinrad [51].

I Proposition 4. Any labeling scheme for Sc,n requires labels of size at least
⌊√

cn
2

⌋
bits.

Proof. Assume for contradiction that there exists a labeling scheme assigning labels of size
strictly less than b

√
cn
2 c. Let G be an n-vertex graph. Let G′ be the graph resulting by

adding
⌊
n2

c

⌋
− n isolated vertices to G, and note that now G′ is c-sparse. The graph G is an

induced subgraph of G′. It now follows that the vertices of G have labels of size strictly less

than
⌊√

cbn2/cc
2

⌋
≤ n/2 bits. As G was arbitrary, we obtain a contradiction. J

In the remainder of this section we are assuming that α > 2 and prove the following:

I Theorem 6. For any n, any labeling scheme for n-vertex graphs of Ph,χ,α requires label
size Ω( α

√
n).

More precisely, we present a lower bound for Pl which is contained in Ph. Let n ∈ N be
given and let H = (V (H), E(H)) be an arbitrary graph with i1 vertices where i1 = Θ( α

√
n) is

defined as in Section 3. We show how to construct a graph G = (V,E) in Pl with n vertices
that contains H as an induced subgraph. Observe that a labeling of G induces a labeling
of H. As H was chosen arbitrarily and as any labeling scheme for k-vertex graphs requires
bi1/2c label size in the worst case, Theorem 6 follows if we can show the existence of G.

We construct G incrementally where initially E = ∅. Partition V into subsets V1, . . . , Vn
as follows. The set V1 has size bCnc − i1. For i = 2, . . . , i1 − 1, Vi has size bCn/iαc. Letting
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n′ =
∑i1−1
i=1 |Vi|, we set the size of Vi to 1 for i = i1, . . . , i1 +n−n′− 1 and the size of Vi to 0

for i = i1 +n−n′, . . . , n, thereby ensuring that the sum of sizes of all sets is n. Observe that∑i1
i=1bCn/iαc ≤ n so that n′ ≤ n− i1, implying that n− n′ ≥ i1. Hence we have at least i1

size 1 subsets Vi1 , . . . , Vi1+n−n′−1 in each of which the vertex degree allowed by Definition 2
is at least i1.

Let v1, . . . , vi1 be an ordering of V (H), form a set VH ⊆ V of i1 arbitrary vertices from the
sets Vi1 , . . . , Vi1+n−n′−1, and choose an ordering v′1, . . . , v′i1 of VH . For all i, j ∈ {1, . . . , i1},
add edge (v′i, v′j) to E iff (vi, vj) ∈ E(H). Now, H is an induced subgraph of G and since
the maximum degree of H is i1 − 1, no vertex of Vi exceeds the degree bound allowed by
Definition 2 for i = 1, . . . , n.

We next add additional edges to G in three phases to ensure that it is an element of Pl
while maintaining the property that H is an induced subgraph of G. For i = 1, . . . , n, during
the construction of G we say that a vertex v ∈ Vi is unprocessed if its degree in the current
graph G is strictly less than i. If the degree of v is exactly i, v is processed.

Phase 1

Let V ′ = V \ (V1 ∪ VH). Phase 1 is as follows: while there exists a pair of unprocessed
vertices (u, v) ∈ V ′ × VH , add (u, v) to E.

When Phase 1 terminates, H is clearly still an induced subgraph of G. Furthermore, all
vertices of VH are processed. To see this, note that the sum of degrees of vertices of VH when
they are all processed is O(i21) = O(n2/α) which is o(n) since α > 2. Furthermore, prior
to Phase 1, each of the Θ(n) vertices of V ′ have degree 0 and can thus have their degrees
increased by at least 1 before being processed.

Phase 2

While there exists a pair of unprocessed vertices (u, v) ∈ V ′ × V ′, add (u, v) to E. At
termination, at most one vertex of V ′ remains unprocessed. If such a vertex exists we process
it by connecting it to O( α

√
n) vertices of V1; as |V1| = Θ(n) there are enough vertices of V1

to accomodate this. Furthermore, prior to adding these edges, all vertices of V1 have degree
0, and hence the bound allowed for vertices of this set is not exceeded.

Phase 3

We add edges between pairs of unprocessed vertices of V1 until no such pair exists. If no
unprocessed vertices remain we have the desired graph G. Otherwise, let w ∈ V1 be the
unprocessed vertex of degree 0. We add a single edge from w to another vertex w′ of V1,
thereby processing w and moving w′ from V1 to V2. Note that the sizes of V1 and V2 are kept
in their allowed ranges due to the first two conditions in Definition 2. This proves Theorem 6.

6 O(log n) adjacency labeling schemes for some power-law graphs

The lower bound presented can be avoided in two interesting cases. The first, for random
graphs generated by a popular model, and the second using an extension of the concept of
labeling schemes from the literature.
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BA model

As discussed in Sec. 4.1, generative models play an important role in the study of power-law
graphs. Perhaps the most well-known generative model is the Barabási-Albert (BA) which,
roughly, grows a graph in a sequence of time steps by inserting a single vertex at each step
and attaching it to m existing vertices with probability weighted by the degree of each
existing vertex [12]. The BA model generates graphs that asymptotically have a power-law
degree distribution (α = 3) for low-degree nodes [15]. However, graphs created by the BA
model have low arboricity 2 [34]. We use this fact to devise the following highly efficient
labeling scheme for such graphs.

I Proposition 5. The family of graphs generated by the BA model has an O(m logn)
adjacency labeling scheme.

Proof. Let G = (V,E) be an n-vertex graph resulting by the construction by the BA model
with some parameter m (starting from some graph G0 = (V0, E0) with |V0| � n). While it
is not known how to compute the arboricity of a graph efficiently, it is possible in near-linear
time to compute a partition of G with at most twice3 the number of forests in comparison to
the optimal [10]. We can thus decompose the graph to 2m forests in near linear time and
label each forest using the recent logn+O(1) labeling scheme for trees [6], and achieve a
2m(logn+O(1)) labeling scheme for G. J

If the encoder operates at the same time as the creation of the graph, Proposition 5 can
be tightened to yield a m logn labeling scheme, by storing the identifiers of the vertices to
the node introduced. Theorem 6 and Proposition 5 strongly suggest that local properties of
power-law graphs are very different from those of a randomly generated graph using the BA
model. In contrast, other generative models such as Waxman’s [53], N-level Hierarchical [19].
and Chung and Liu’s [23] (Chapter 3) do not seem to have an obvious smaller label size than
the one in Proposition 4.

Labeling schemes with a query

The concept of labeling scheme limits the number of nodes participating in a query severely.
A relaxed variant thereof, called 1-query labeling scheme [39], assumes that the decoder
receives both labels queried, and may access the label of a third node in order to answer the
query. If this is allowed, we can construct an O(logn) 1-query adjacency labeling scheme for
sparse (and power-law) graphs as follows: We assign each node v with an identifier ID(v),
then produce a classic [26] chaining perfect hash-function4 from {1 . . . cn} to {1 . . . n}, with
the guarantee that the worst case number of collisions is constant. We then compute the
hash function for all edges (u, v) and store the tuple 〈ID(v), ID(u)〉 in the label of the
corresponding vertex. The decoder first computes the hash value resulting from ID(v) and
ID(u) and proceed to examine if on the label corresponding to the result of the function the
tuple appears. The decoder needs only to know the primary and secondary hash functions
used, description thereof amount to logarithmic number of bits, which can be concatenated
to each label.

2 the arboricity of a graph is the minimum number of spanning forests needed to cover its edges.
3 More precisely, for any ε ∈ (0, 1) there exist an O(|E(G)|/ε) algorithm [42] that computes such partition

using at most (1 + ε) times more forests than the optimal one.
4 To this end, we may for example first partition the domain into c parts.
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7 A distance labeling scheme

In this section we extend the usefulness of our strategy by showing a labeling scheme for
small distances in power-law graphs.

For sparse graphs, Alstrup et al. [7] obtain a distance labeling scheme with maximum label
size O( nD log2 D) where D = (logn)/(log m+n

n ) and m is the number of edges in the graph.
Gawrychowski et al. obtain an upper bond of [33] O( nD logD) with sub-linear decoding time.
Few general results on lower bounds exist. The lower bound of Ω(

√
n) for adjacency given in

the present paper is trivially also a lower bound for distance; for total label size, the best
known lower bound remains Ω(n3/2) as proved by Gavoille et al. [31].

I Lemma 7. For any computable f : N −→ N such that f(n) ≤ n− 1 for all n, and for any
χ(n) ≥ n1/(alpha−1+f(n)) there is an f(n)-distance labeling scheme for Ph,χ,α that assigns
labels of length at most O(nf(n)/(f(n)+1) log f(n)).

Proof. Let G be a graph in Ph,χ,α. A node of G is fat if it has degree at least n1/(α−1+f(n))

and thin otherwise. The label of each node v contains (i) a table of distances to all fat nodes
(if the distance is more than f(n), it is simply ignored), (ii) a table of distances to all thin
nodes w that are at most distance f(n) away from v where the shortest path between v and
w does not pass through any fat node, and (iii) a single bit signifiying whether the node is
fat or thin. Clearly, as f(n) is computable and distances in G are computable, there is a
computable encoder assigning labels. A decoder can now compute the distance between any
two nodes u, v as follows: If both u or v are fat, the distance can be directly read off part (i)
of the label of any node. If at least one of u and v is fat, the distance can be read off part (i)
of the label of the thin node. If both nodes are thin, the decoder can check if the distance is
in part (ii) of the label of either node; if the distance is not present, either the distance is
strictly greater than f(n), or the shortest path between u and v passes through a fat node;
in this case, the decoder may brute-force check the distances from u and v to each fat node,
and output the smallest sum of these two distances.

Furthermore, as all nodes of G are either thin or fat, it is clearly possible for an encoder
to compute all distances less than or equal to f(n) between any pair of nodes. Note that as
all distances we care for are bounded above by f(n), each such distance can be stored using
at most log f(n) bits.

As G = G(V,E) is in Ph,χ,α, we have

n−1∑
i=χ(n)

|Vi| ≤
n−1∑

i=n
1

α−1+f(n)

|Vi| ≤ C ′

 n(
n

1
α−1+f(n)

)α−1


≤ C ′n1−(α−1)/α−1+f(n) = C ′nf(n)/(α−1+f(n))

Thus, a table of distances to all fat nodes takes up at most O
(
n

f(n)
α−1+f(n) log f(n)

)
bits.

Similarly, for each node v there are at most
(
n1/(α−1+f(n)))f(n)

= nf(n)/(α−1+f(n)) nodes at distance at most f(n) away from v where the shortest path
consists only of thin nodes. Hence, the associated table of distances takes up at most
O(nf(n)/(α−1+f(n)) logn) bits.

In total, each label thus has size at most O(nf(n)/(f(n)+1) logn) bits. J

For f(n) = logn, Lemma 7 yields labels of size O
(
n(logn)/(α−1+logn) log logn

)
. Unsur-

prisingly, as we are only considering distances up to f(n), this label size is asymptotically
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smaller than for the labeling schemes working for all distances in sparse graphs, e.g. the
largest label sizes of [33] for sparse graphs is O(n log logn

logn ). For power-law random graphs,
Chung and Lu show in [22] that, subject to mild conditions, the diameter of power-law graphs
with α > 2 is almost surely Θ(logn). We thus expect our labeling scheme to have superior
performance for such graphs.

8 Conclusion and Future Work

We have devised adjacency and distance labeling schemes for sparse graphs and graphs whose
degree distribution approximately follows a power-law distribution. We have proven lower
bounds for the class of power-law graphs showing that our strategy for adjacency labeling
scheme is almost optimal, and showed two relaxations that allow for logarithmic size labels.
In the full version of the paper we also validate experimentally that the labeling scheme for
power-law graphs obtains results in practice requiring little space, and that the theoretical
threshold we use in our strategy is reasonably close to the optimum threshold.

8.1 Future work
We propose the following directions:

Our labeling schemes are designed for static networks, and while it seems not difficult
to extend our idea to dynamic networks, an analysis is required to account for the
communication and number of re-labels incurred by such an extension.
Labeling schemes for power-law graphs can likely be devised for the realistic case where
the scheme only has incomplete knowledge of the graph, for example when the expected
frequency of vertices of each degree is known, but not the exact frequency of each vertex.
Closing the gap of the multiplicative logarithmic factor may be of interest to the theory
community. A more interesting gap exists for distance labeling schemes. As we have
seen, there is a large gap between labeling schemes for short distance and adjacency
for power-law (and sparse) graphs. This gap effectively deemed the distance labels
uninteresting for practical applications.
Finally, while power-law distributions may model the degree distribution of real-world
networks, other distributions may fit better (see, e.g., [24]); it is interesting to see whether
refinements of our labeling scheme that utilize knowledge about such distributions would
result in superior labeling schemes for real-world data.
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