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ABSTRACT

Coastally associated rainfall is a common feature, especially in tropical and subtropical regions. However, it

has been difficult to quantify the contribution of coastal rainfall features to the overall local rainfall. The

authors develop a novel technique to objectively identify precipitation associated with land–sea interaction

and apply it to satellite-based rainfall estimates. The Maritime Continent, the Bight of Panama, Madagascar,

and theMediterranean are found to be regionswhere land–sea interactions play a crucial role in the formation

of precipitation. In these regions;40%–60% of the total rainfall can be related to coastline effects. Because

of its importance for the climate system, the Maritime Continent is a region of particular interest, with high

overall amounts of rainfall and large fractions resulting from land–sea interactions throughout the year. To

demonstrate the utility of this study’s identification method, the authors investigate the influence of several

modes of variability, such as the Madden–Julian oscillation and the El Niño–Southern Oscillation, on coastal

rainfall behavior. The results suggest that during large-scale suppressed convective conditions, coastal effects

tend to modulate the rainfall over the Maritime Continent leading to enhanced rainfall over land regions

compared to the surrounding oceans. The authors propose that the novel objective dataset of coastally

influenced precipitation can be used in a variety of ways, such as to inform cumulus parameterization or as an

additional tool for evaluating the simulation of coastal precipitation within weather and climate models.

1. Introduction

Precipitation, one of the most important meteorologi-

cal variables, is strongly affected by variations in solar

forcing. As a result, tropical rainfall variability is strongly

dominated by the seasonal and the diurnal cycle. Yang

and Slingo (2001) showed the importance of rainfall

variance within diurnal and subdiurnal frequencies for

coastal tropical regions such as the Maritime Continent.

In this area the diurnal rainfall variability is thought to be

mostly generated by land–sea-breeze circulations (Mori

et al. 2004). Land–sea-breeze systems are mainly forced

by differential heating between land and the adjacent

ocean but also affected by a variety of different factors,

such as coastline curvature, latitude, topography, at-

mospheric stability, land use, and synoptic wind patterns

(e.g., McPherson 1970; Haurwitz 1947; Pielke 2002;

Estoque 1962; Mak and Walsh 1976; Mahrer and Pielke

1977). Crosman and Horel (2010) provide a compre-

hensive review of the studies that have been conducted

about the nature of land–sea-breeze circulation systems.

These circulation systems cause characteristic rainfall pat-

terns in coastal regions. Mori et al. (2004) showed that the

Maritime Continent rainfall between 2100 and 0900 LT is

concentrated over the oceans, peaking in the early morn-

ing. The 0900–2100 LT precipitation is mainly located over

land, with maxima occurring in the early evening. The

rainfall patterns associated with land–sea interaction tend

to propagate roughly 150km onshore and offshore

(Keenan and Carbone 2008). Further propagation can oc-

cur through the interaction with other phenomena, such as
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mountain–valley breeze systems (Qian 2008) or gravity

waves (Mapes et al. 2003).

Roughly 20% of the world’s population lives within

the area that is affected by coastal precipitation. Addi-

tionally, the mean population density is about 3 times

higher near coasts than on global average (Small and

Nicholls 2003). Coastal areas are also vulnerable to an

increase of storm surges and heavy precipitation.

Therefore, a more accurate simulation of coastal rainfall

in global climate models can potentially contribute di-

rectly to a better assessment of climate impacts on

coastal areas. Precipitation, on the other hand, remains a

challenging meteorological variable in general circula-

tion models. Several studies have documented the issues

in representing precipitation in climate models. For

example, Sun et al. (2006) and Dai (2006) compared

rainfall simulations of 18 coupled models with obser-

vations and found that while most models are able to

capture the broad pattern of precipitation amount and

year-to-year variability, they fail to reproduce the di-

urnal cycle. Compared with observations, modeled

rainfall is too weak and too frequent (Stephens et al.

2010). In coastal areas, the spatial pattern and timing of

precipitation becomes worse (Collier and Bowman

2004). Especially over the Maritime Continent most

climate models reveal a dry–wet rainfall bias, with too-

wet conditions over the ocean and too-dry conditions

over land, or vice versa. It is likely that this is related to

the complex structure of islands in combination with

steep terrain. This combination leads to complex coastal

convective systems causing rainfall patterns that are not

easily captured by the relatively coarse-resolution global

climate models. Although advances in convection pa-

rameterization and model resolution have been made to

tackle the problem of rainfall timing and intensity in

climate models, the main issues in simulating the diurnal

precipitation cycle remain unsolved (e.g., Warner et al.

2003; Slingo et al. 2004; Sato et al. 2009; Gianotti et al.

2012; Folkins et al. 2014).

One of the key problems for an accurate description of

coastal convection and precipitation is a fundamental

lack of a global dataset of coastally induced precipitation.

Although many studies have been conducted to describe

convection, precipitation, and land–sea-breeze circula-

tion systems (e.g., Frizzola and Fisher 1963; Tijm et al.

1999; Zhuo et al. 2014; Wapler and Lane 2012), the vast

majority of them are both local and phenomenological

because precipitation that is induced by land–sea in-

teraction has to be separated from the background state

of overall rainfall. So far, to our knowledge, no method

exists that attempts to objectively identify rainfall directly

associated with land–sea interactions. The aim of this

study is to describe and evaluate a method that objec-

tively finds coastal precipitation patterns that are related

to land–sea interaction. Once the method is developed

and assessed, a global climatology of coastally induced

rainfall and its diurnal cycle are presented. To give an

example for the utility of the derived dataset, the roles of

the Madden–Julian oscillation (MJO) and El Niño–
Southern Oscillation (ENSO) in coastal precipitation in

the Maritime Continent region are then investigated.

Section 2 describes the rainfall data used in the study.

Section 3 discusses the broad features of the objective

coastal rainfall detection technique, with a more tech-

nical description provided in the appendix. Sections 4 to

6 then describe its application to a global rainfall dataset

to study the global climatology of coastal rainfall, its

diurnal cycle, and the influence of larger-scale modes of

variability on the coastal rainfall occurrence. This is

followed by a summary and conclusions in section 7.

2. Rainfall observations

The rainfall data used in this study are based on

satellite rainfall estimates of the Climate Prediction

Center Morphing Method (CMORPH; Joyce et al.

2004). The dataset has a spatial resolution of 0.258 and
covers the global area from 608S to 608N (Fig. 1). The

FIG. 1. Average monthly sum of total rainfall (1998–2013) for the region that is covered by the CMORPH

satellite-based rainfall estimates.
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temporal resolution is 3 h, and the time period used is

1998–2013.

The morphing method uses motion vectors that are

derived from half-hourly interval geostationary satellite

infrared imagery to propagate the precipitation estimates

derived from passive microwave scans. In addition, the

shape and intensity of the precipitation features are

modified during the time between microwave sensor

scans by performing a time-weighted linear interpolation.

This process yields a spatially and temporally complete

microwave-derived precipitation analysis, independent

of the infrared temperature field. The dataset shows

substantial improvements both over simple averaging

of the microwave estimates and over techniques that

blend microwave and infrared information. Yet there

are still several issues: One is the lack of accuracy of

precipitation estimation over snowy regions. Another

is related to precipitation that dissipates over regions

that are not covered by the passive microwave satellite.

This rainfall cannot be captured by the morphing al-

gorithm. Although CMORPH ranks among the best

available satellite-based rainfall estimates, the corre-

lation with rain gauge products is far from being perfect

(Joyce et al. 2004).

3. Pattern recognition

In the present work we wish to extract rainfall

whose structure indicates that it is associated with

coastal phenomena like land–sea-breeze conver-

gence. Previous studies have shown that rainfall re-

lated to coastal land–sea interaction is mainly of

higher intensity than the rainfall that is not affected by

the presence of the coastline in that area. Further-

more, the precipitation patterns of interest are aligned

with the coastline and should occur in the vicinity of

the coastline (e.g., Mori et al. 2004; Keenan and

Carbone 2008; Qian 2008; Hill et al. 2010). Based on

this knowledge we define four heuristics that have to

be met to identify precipitation as associated with

coastal land–sea interaction:

(i) compared with the surrounding precipitation, the

rainfall of interest has a higher intensity,

(ii) the recognized coastal precipitation is not large scale,

(iii) rainfall due to land–sea interaction occurs within

;250 km of the coast, and

(iv) the precipitation pattern is aligned with the coastline.

The above heuristics are applied in six steps, which

we briefly summarize below and in Figs. 2a–f. A more

technical description of our algorithm can be found

in the appendix.

(i) Application of a rainfall threshold to the rain data.

To apply the first-mentioned heuristic, we choose

local monthly rainfall percentile thresholds in-

stead of a hard threshold. At every grid point and

for every month we determine the deciles of the

3-hourly rainfall distribution and apply thresholds

of the 20th, 50th, and 80th percentile, respectively

(see below). With monthly percentiles as a threshold,

FIG. 2. The sequence of coastline-induced rainfall recognition

algorithm. (a) Conversion of the rain data to a binary image.

(b) Applying a rainfall threshold. (c) Deleting synoptic-scale

rainfall patterns and fitting the remaining patterns to ellipses.

(d) Defining a broad coastal area and deleting any rainfall domains

not located in the green marked area. (e) Alignment testing with

straight lines for the fit ellipse to the next coastline. (f) Result.
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regional and seasonal variations of the rainfall are

taken into account.

(ii) Converting the rainfall data to binary data.

Here any rainfall greater than the rainfall thresh-

old is set to 1, and lower values are assigned as 0. To

test geometrical aspects like size and coastline

alignment, each contiguous rainfall area has to be

considered separately. The separation of the dif-

ferent rainfall areas uses a gradient method, which

performs best on binary data (see appendix for

further details).

(iii) Deletion of large-scale rainfall.

After separation, the total size of each contigu-

ous rainfall area is measured. Using a size threshold

of 106 km2, rainfall patches that can be accounted as

synoptic-scale patterns, like large frontal systems,

are then deleted from the data.

(iv) Fitting the rainfall domains with ellipses and ap-

plying an eccentricity threshold.

Since we are interested in rainfall features that

stretch along a coastline, we assume that the de-

tected features are elongated. Therefore, the rain-

fall domains are least squares fitted with ellipses.

After fitting, each contiguous rain area is enclosed

by an ellipse. We then apply a threshold for the

eccentricity of the ellipses to delete rainfall pat-

terns that are not elongated. The application of an

eccentricity threshold is also necessary because the

remaining rainfall patterns will be tested for align-

ment with the coastline. Alignment can only sensi-

bly be determined if the rainfall area has a clear

orientation. This is ensured by an eccentricity of the

fit ellipse larger than a threshold.

(v) Deleting rainfall not occurring in the vicinity of the

coast.

Here we define a broad area (;250 km) around

the coastline and delete all contiguous rainfall

domains not occurring in the defined coastal area.

Specifically, if less than 20% of the contiguous

rainfall area lies within the coastal vicinity it is

deleted from the dataset. With this blurred thresh-

old we do not cut off rainfall domains stretching

over the borders of the coastal area. We are also

able to detect patterns that are slightly farther

onshore or offshore than the distance threshold

defined in the heuristics. This has the advantage

that the hard areal threshold becomes smoother.

(vi) Testing the alignment of the rainfall domains with

the coastline.

For alignment testing we first define a narrow

coastal area (;50 km). Any rainfall area with at

least 90% of its area in this narrow coastal strip is

assumed to be aligned with the coastline and

already marked as a coastally influenced precipita-

tion pattern. For each of the remaining objects,

three straight lines, two from the tips and one from

the center of the fit ellipse, are drawn orthogonally

in both directions of the major axis. The distance

from the origin to the next coastline intersection for

each straight line is measured. If the standard

deviation of the three distances is below a certain

percentage of the mean distance, the contour is

assumed to be aligned with a coastline. The object

is thenmarked as aligned with the coast if the mean

distance of all corresponding straight lines is not

greater than 500 km.

All rainfall domains that have not been deleted during

the six steps meet the previously mentioned heuristics

and are assumed to be precipitation that is associated

with coastal land–sea interaction. The algorithm is ap-

plied to all single 3-hourly time steps of the CMORPH

dataset from 1998 to 2013. A more comprehensive

technical description of the algorithm can be found in

the appendix. The source code of the algorithm can be

downloaded freely via GitHub (http://dx.doi.org/10.5281/

zenodo.18173).

From the above discussion it is evident that thresholds

have to be applied to run the pattern recognition algo-

rithm. These thresholds are

(i) the area of the rainfall patches,

(ii) the intensity of the rainfall,

(iii) the eccentricity of the fitted ellipses, and

(iv) the threshold for the standard deviation of different

straight lines from the main axis of the fit ellipse to

the next coastline.

As the synoptic scale is well defined, the area threshold

is set to a single value (;106 km2). The choice of the

other three thresholds is more difficult. We make rea-

sonable choices for all three thresholds and generate an

ensemble of 27 members by using all possible combi-

nations of the threshold settings summarized in Table 1.

The decision to use an ensemble was made to keep the

method objective rather than subjectively choosing a

‘‘perfect’’ parameter set. For each parameter we chose

the highest and lowest reasonable threshold and one

value in between.

TABLE 1. Threshold values used in the recognition algorithm

yielding an ensemble of 33 5 27 coastal rainfall estimates.

Threshold Values

Rainfall intensity (percentile) 20 50 80

Eccentricity 0.2 0.5 0.8

Variation of straight line length (%) 5 25 50
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The 20th percentile is chosen as a reasonable low

rainfall intensity threshold. Values less than the 20th

percentile would be contradictory to the a priori as-

sumption that coastal rainfall is of relatively high in-

tensity. Also, with low rainfall thresholds the rainfall

data become noisier. This leads to a poor performance

of the applied Canny edge detection.

Canny edge detection performed best by applying a

rainfall threshold greater than the 80th percentile. With

such high rainfall thresholds, however, only a small

number of rainfall events are remaining. Therefore, we

chose to set the highest reasonable threshold choice as

the 80th percentile. The application of the eccentricity

threshold as an orientation parameter is similar. Low

values indicate rainfall patterns that are rather round. To

assign a clear major axis that is needed for alignment

testing, the objects should not be round but elliptical. We

therefore chose 0.8 as amaximal threshold. Thresholds of

less than 0.2 turned out to be effective for the alignment

testing. On the other hand, too much precipitation was

deleted when further decreasing the threshold. There-

fore, we chose 0.2 as a reasonable lower threshold.

Rainfall patterns with an angle of less than 458 can be

considered as aligned with the coastline. They would

roughly correspond to the variation of the straight lines

by 50%. Therefore, we choose the upper 50% as an

upper threshold. Nevertheless, the testing with different

straight-length variation thresholds indicates that this

parameter has less impact on the results than the

threshold choice for rainfall intensity and the eccen-

tricity of the fit ellipse.

4. Overall climatology of detected coastal rainfall

All results presented here are based on the ensemble

of objectively identified coastal rainfall described in the

previous section. All ensemble members are taken into

account and no weighting is applied.

The climatology of the detected coastal precipitation,

shown in Figs. 3a,b, clearly reveals the expected sea-

sonal variability in the tropics and subtropics. During

December–February (DJF) coastal rainfall maxima

occur in the Maritime Continent region and over Ma-

dagascar. June–August (JJA) shows peaks over the

Bay of Bengal, the Central American Pacific coast, the

North American Atlantic coast, and tropical West

Africa. Also, relatively high amounts of precipitation

are detected over the Gulf of Carpenteria (158S, 1408E)
during austral summer. In both seasons high amounts

of coastal rainfall are detected in the Bight of Panama

and around the Maritime Continent.

In the tropical coastal regions high values of coastal

rainfall are accompanied by a high percentage of the

contribution of coastal rainfall to the total (Figs. 3c,d).

Perhaps the most prominent example all year round is

the Maritime Continent, with the coastal rainfall con-

tribution frequently exceeding 50% and approaching

66% in some regions. This highlights the importance of

land–sea interaction for Maritime Continent rainfall.

Relatively high amounts of coastally related rainfall are

found in the highlands of New Guinea. This might

originate from orographic effects caused by the moun-

tain flanks being roughly parallel to the New Guinean

coastline. The interaction of coastal and orographic

effects is difficult to separate. Qian et al. (2012)

showed the strong interconnection of orographic and

coastal effects for the Maritime Continent rainfall.

Furthermore, Warner et al. (2003) conjectured a

complex interaction of stratified air above topography

and moist convection triggered by land-breeze lifting.

Therefore, we account these detected features as

coastline associated.

FIG. 3. Mean coastal rainfall for (a),(c) DJF and (b),(d) JJA. The ensemble mean of detected coastal rainfall is shown in (a) and (b), and

the detected precipitation as a percentage of total rainfall is shown in (c) and (d).
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The fraction of detected coastal rainfall also reveals

the importance of land–sea interaction in arid and

semiarid coastal regions. The Red Sea, the Persian Gulf,

the Australian west coast, and the southwest African

coast are examples where, despite relatively modest

overall rainfall amounts, major portions of the pre-

cipitation are aligned with the coast. TheMediterranean

is the second largest region (after the Maritime Conti-

nent) that is strongly influenced by land–sea interaction.

Even in the Northern Hemisphere winter, the percent-

age of detected coastal precipitation remains high. This

signal during DJF in the Mediterranean might have its

origin in frontal systems that are aligned with the

coastline and should therefore be treated with caution.

Figure 4 shows the ensemble standard deviation as a

percentage of the ensemble mean. It is interesting to

note that the ensemble members show better agreement

over tropical land areas than over the adjacent ocean.

The standard deviation tends to rise with an increasing

distance from the coastline. It is known that with greater

distance from the coast the precipitation patterns be-

comemore influenced by ambient flow patterns (Gilliam

et al. 2004; Azorin-Molina and Chen 2009), and thus the

alignment of the rainfall areas with the coast becomes

more sensitive to the application of an alignment

threshold. Relatively high standard deviations are found

in the extratropics. A more detailed investigation re-

veals that in this area our algorithm is particularly sen-

sitive to the application of the rainfall threshold, leading

to larger variations across the different ensemble

members.

5. The diurnal cycle of coastal rainfall

Figure 5 shows the local daytime (Figs. 5a–c) and

nighttime (Figs. 5d–f) rainfall as a fraction of overall

rainfall for all rainfall (Figs. 5a,d), the detected coastal

rainfall events only (Figs. 5b,e), and the residual rainfall

considered noncoastal in nature (Figs. 5c,f). Here,

daytime is referred to as 0900–2100 LT and nighttime as

2100–0900 LT. For total rainfall (Figs. 5a,d) the diurnal

variability is very large in the Maritime Continent, the

Bight of Panama, the west coast of Central America, the

eastern Bay of Bengal, theAfrican east coast, and around

the Horn of Africa. The fraction of detected daytime

rainfall, shown in Figs. 5b,e, reveals a more pronounced

diurnal variation than the total rainfall. Some regions

have up to 95% more rainfall during the day over land

than over the adjacent sea, and vice versa for nighttime

rainfall. The most significant diurnal rainfall variations

occur over the Maritime Continent, Madagascar, and the

Bight of Panama. The fraction of local nighttime rainfall

to overall rainfall is shown on the right-hand side of Fig. 5.

Note that daytime and nighttime rainfall together add up

to total rainfall. Strong nighttime signatures of detect-

ed coastal precipitation are evident over the Central

American Pacific coast and the east coast of the United

States as well as theMaritime Continent.Weaker but still

discernible nighttime signals are detected in Southeast

Asia, the Bay of Bengal, and around the Philippines.

Comparing the daytime and nighttime fractions, it is ev-

ident that the diurnal rainfall cycle is stronger over land

than over the adjacent ocean.

It is well known that the coastal diurnal rainfall cycle is

strongly affected by land–sea interaction. Therefore we

hypothesize that 1) diurnal rainfall variations of the

detected coastal precipitation should be much larger

than those of the overall rainfall near coasts, and 2) the

residual rainfall that has not been detected as coastally

influenced should reveal very little diurnal variation.

Figure 5c shows this remaining residual daytime and

nighttime rainfall as a fraction of overall residual rain-

fall. The residual fractions of daytime and nighttime

precipitation are small, with values mostly between 35%

and 65%. Note that no diurnal variation would be in-

dicated by 50% (green areas). This supports our claim

that the presented technique is able to capture the ma-

jority of rainfall that is due to land–sea interaction in

FIG. 4. The ensemble standard deviation as percentage of the ensemble mean.
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coastal areas. In some areas the residual rainfall var-

iation remains significant though. In particular, the

northwest coast of Borneo, the west coast of Sumatra,

and the Bight of Panama show a relatively high amount

of residual nighttime rainfall over the ocean.

6. Coastal rainfall over the Maritime Continent

The Maritime Continent, not surprisingly, has been

identified as one of the regions where precipitation is

particularly strongly influenced by land–sea interaction.

Figure 6 shows the average timing of rainfall over land

and over water for the Maritime Continent and on

global average. Here, the dashed lines represent the

detected coastal precipitation and the solid lines the

total precipitation. For a better comparison, the rainfall

is normalized by making the sum of a full cycle equal to

one. The diurnal cycle over the Maritime Continent is

clearly more pronounced than on global average. This is

especially true for the land regions. The overall distri-

bution of the maxima shows the expected behavior.

Over land the rainfall peaks in the late afternoon,

whereas the maximum over water occurs in the early

morning. This is in agreement with the results of Mori

et al. (2004), who were using TRMM-3B42 satellite

rainfall estimates.

The detected precipitation shows a stronger diurnal

variation, especially over water. The detected minimum

of oceanic rainfall occurs roughly 3 h earlier than the

total rainfall minimum. In general the detected coastal

precipitation variation is most pronounced over land.

The detected coastal rainfall over the Maritime Conti-

nent shows roughly the same diurnal variation as the

recognized precipitation on global average.

To further assess the utility of the coastal rainfall data-

set, we investigate the influence of large-scale modes of

climate variability on coastal precipitation in theMaritime

Continent. In particular, we continue on from earlier

studies (Rauniyar and Walsh 2011, 2013) and investigate

how theMJOandENSOmodulate the diurnal cycle. First,

the difference of coastal rainfall in theMaritimeContinent

region during active and suppressed MJO phases is cal-

culated. The MJO is considered to be active over the

Maritime Continent in phases 4–6 of the Wheeler–

Hendon real-time multivariate MJO (RMM) index

(Wheeler andHendon 2004). The inactive phase is defined

with index values of 1, 2, 7, and 8. Only days with anRMM

amplitude of equal to or greater than 1 were sampled.

Figure 7 shows the difference of totalDJF rainfall (Fig. 7a)

and DJF detected coastal rainfall (Fig. 7b) between sup-

pressed and active MJO phase.

In general there is more rainfall during the active

phase over the ocean. However, as has been found in

previous studies [such as Rauniyar and Walsh (2011),

who were using nonobjective methods], over land there

are large areas where rainfall during the suppressed

FIG. 5. Mean annual (left) daytime and (right) nighttime rainfall as a fraction of overall daily rainfall for (top) total precipitation,

(middle) detected coastal precipitation, and (bottom) residual rainfall. Daytime is defined as 0900–2100 LT and nighttime as 2100–0900

LT. For (top) and (bottom) only rainfall within 250 km onshore and offshore is shown.
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phases is larger than that during the active phase. In-

terestingly, both the magnitude and pattern of the

overall signal are well reproduced when considering

only coastally influenced precipitation. This leads us to

conclude that it is mainly the precipitation due to land–

sea interaction that leads to an increase of rainfall over

land during the suppressed phase. This is an important

finding, especially in the light that weather and climate

models of coarse resolution are unlikely to be able to

capture land–sea effects correctly.

The ENSO also influences the rainfall over the Mar-

itime Continent. Global rainfall pattern differences tend

toward dryer conditions in the western Pacific during the

El Niño phase of the oscillation. Figure 8a shows the

mean DJF difference of total rainfall between El Niño
years and weak ENSO years. Our El Niño definition is

based on the oceanic Niño index (ONI). The ONI is

based on a 3-monthly running mean of the SST anomaly

in the Niño-3.4 region (58N–58S, 1208E–1708W). ONI

values of greater than 0.5 indicate El Niño events, and

values within 60.5 show weak ENSO episodes.

It can be clearly seen that there is more rainfall over

the ocean during years in which ENSO is weak. On the

islands, on the other hand, the situation looks different.

There is more rainfall over land regions of the Maritime

Continent during El Niño years. The rainfall pattern

difference for the detected coastal rainfall looks very

similar to the total precipitation (see Fig. 8). The mag-

nitudes of the positive detected coastal rainfall anoma-

lies over land are about the same order as the anomalies

of the total rainfall.

Once again, as for the MJO events, the variations of

rainfall with El Niño support the hypothesis that during

suppressed convective large-scale conditions, coastal

effects strongly modulate the rainfall over the Maritime

Continent and contribute largely to an enhancement of

rainfall (Qian et al. 2013; Rauniyar and Walsh 2013).

The fact that the results using the objectively detected

coastal rainfall over the islands are very similar to those

FIG. 6. The mean occurrence of global rainfall and rainfall over

the Maritime Continent over land and ocean as a function of the

time of the day. For a better comparison of the diurnal global and

Maritime Continent rainfall, the sum of a full rainfall cycle is set

to one.

FIG. 7. Mean difference of DJF rainfall during suppressed and

active MJO phase for (a) total rainfall and (b) detected coastal

rainfall.

FIG. 8. Mean difference of DJF rainfall during weak ENSO and El

Niño phase for (a) total rainfall and (b) detected coastal rainfall.
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using total rainfall provides some evidence that the algo-

rithm developed in this study is able to identify coastally

driven precipitation events well.

7. Summary and conclusions

In the present study a pattern recognition technique

is developed and applied to a global 3-hourly rainfall

dataset to detect rainfall associated with land–sea in-

teractions. The technique applies thresholds for four

different characteristics to extract rainfall that is likely

driven from coastal features. Since the algorithm em-

ploys several thresholds and since the implications of the

threshold choice are not entirely knowable, an ensemble

of 27 different threshold setups is created. The ensemble

mean of the generated dataset reveals the expected

seasonal and diurnal variability of coastal tropical pre-

cipitation. The standard deviation among the ensemble

members, which is on average 4% of the ensemble

mean, indicates the overall robustness of the algorithm.

Over the Maritime Continent and the Bight of Panama

major portions of total precipitation can be clearly re-

lated to coastal land–sea interaction. High fractions of

rainfall associated with coastal rainfall over the Medi-

terranean, the Red Sea, the Persian Gulf, the South

African coast, and the Australian west coast highlight

the importance of coastal processes in arid and semiarid

regions of the world. Most of the expected features of

coastal convection are captured by the algorithm. This is

indicated by the strong diurnal cycle of the detected

rainfall and relatively weak diurnal rainfall variation of

the residual rainfall.

The coastal rainfall recognition method is only based on

a few geometrical aspects of precipitation; no further criteria

have to be met. This differs from many statistical ap-

proaches, including cluster, spectral, or principal-component

analysis, where assumptions like the occurrence of diurnal

harmonics have to be applied. Therefore, already-known

statistical properties, like the diurnal precipitation cycle,

can be studied to evaluate the newly developed method.

Moreover, further aspects of coastal precipitation can

now be easily illustrated. For instance, coastline effects

are known to be an important trigger for deep pre-

cipitating convection (Simpson et al. 1980, 1993; Qian

2008). The presented method reveals that up to two

thirds of the total Maritime Continent rainfall can be

related to coastal effects.

We are also able to objectively show that coastline-

associated precipitation is influenced by modes of large-

scale variability like the MJO and ENSO. The results

suggested that during suppressed large-scale convective

conditions the total precipitation over land areas is

strongly modulated by coastline effects. This is in

accordance with previous studies using nonobjective

statistical methods (Rauniyar and Walsh 2011, 2013).

The strength of the method presented here is that it is

objective and relatively straightforward to apply. This

has allowed us, to our knowledge for the first time, to

characterize coastal precipitation globally rather than

just for a limited amount of regional cases. The dataset

of coastal convection features will also be very useful for

future studies. For instance, it can be applied to identify

the background atmospheric state in which coastal

precipitation occurs. This is crucial for the parameteri-

zation of such rainfall in models, as the MJO and ENSO

analysis shows that coastal effects likely allow rainfall to

exist in large scale conditions, in which rainfall is sup-

pressed over the open ocean. Since it can be driven with

any kind of gridded rainfall data, the algorithm can

moreover be utilized to evaluate coastal precipitation

projected within climate models.
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APPENDIX

The Pattern Recognition Algorithm

A key task in the mining of remote sensing imagery is

the identification of static structures such as buildings,

roads, and bridges. Nevatia and Price (1982) were one of

the first to identify the airports in the San Francisco Bay

area. They applied some simple characteristics about the

airports in this area. Specifically, they assumed an air-

port has a straight runway of certain length and is lo-

cated near the coast. Starting from these heuristics, they

used simple image segmentation techniques to detect

the target features. To detect the target precipitation

features, we also use image segmentation. Image seg-

mentation is a technique where information is extracted
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from the background of an image until all a priori as-

sumptions are met (see section 3 for the heuristics used

here) and the remaining part of the image can be con-

sidered as the detected pattern.

We start the pattern detection by applying the rainfall

intensity threshold and converting the rainfall data to a

binary image. Areas less than the threshold are set to

0 and the ones above to 1. After converting the rainfall

data to a binary image, small holes within the rainfall

areas (1-domains) are closed. Closing of small holes

within a connected domain can be done by dilation and

erosion. Dilation and erosion are methods where a do-

main of an image (A) is probed with a structuring ele-

ment (B), and the way in which the element fits inside an

image object is quantified. The structuring element, in

image processing also referred to as a kernel, is applied

on the binary image. In the present case, a cross of 33 3

pixels is chosen as the kernel shape. Formally, dilation

and erosion are defined as

dilation:A4B5 [
b2B

Ab

erosion:A2B5\
b2B

A2b .

For dilation, the kernel B is scanned over the image

domain A, and the pixels overlapped by B are added to

A. Thus, the black regions within A are growing. Ero-

sion is very similar to dilation; the center of B is sub-

tracted from A if A and B are only partly overlapping.

Therefore, the black regions in A are shrinking. These

two methods are applied consecutively to close small

holes within the domain A.

To apply the heuristics mentioned in section 3, each

rainfall domain has to be considered separately. The

separation of the patterns is realized by Canny edge de-

tection (Canny 1986). ForCanny edge detection, an image

isGaussian filtered to remove noise from the image.After

de-noising the image, localmaxima of gradients within the

domains that are to be separated and their surroundings

are found. The Gaussian filter is defined as

G(i, j)5

�
1

2ps2

�
e2[(i2k)21(j2k)2]/2s2

,

where s is the standard deviation of the Gaussian filter

and k the size of the kernel. A standard deviation of 3

pixels combined with a kernel size of 3 pixels performed

best for the application of theGaussian filter. Eventually

Canny edge detection is applied on the resulting image.

From now on every closed contour that has been de-

tected is considered as an independent object. The first

step after contour separation is to delete large domains.

The remaining objects are fitted to ellipses. We chose

ellipses as fit objects because geometric properties like

orientation and aspect ratio of the fitted pattern are

easily retrieved by the location of the main axis and the

value of numerical eccentricity of the ellipse. The fit is

based on least squares fitting and assumes that all pixels

within an object belong to one ellipse. Further details are

provided inFitzgibbon et al. (1999) and inMulchrone and

Choudhury (2004).

The next step includes the a priori assumption that the

target patterns occur no farther than roughly 250km

onshore or offshore. For this purpose we define a

coastline by applying Canny edge detection to a land–

sea mask of the same resolution as the data. The coastal

area is defined by adding pixels to the neighborhood of

the coastal edges. This technique can be seen as the re-

versal of box counting that is applied to define fractal

geometries such as coastlines (Block et al. 1990). Finally,

all domains that have less than 80% of their total area

within the defined area are deleted from the image.

The remaining patterns are tested for alignment with

the coastline. Alignment can be tested only if each fit

ellipse has an assignable major and minor axis. This is

guaranteed if the numerical eccentricity of the fit ellipse

is considerably larger than 0. Therefore, all domains

with an eccentricity of the fit ellipse lower than a certain

threshold are deleted. The alignment with the coastlines

of the remaining domains is tested in three ways. First, a

narrow coastal area (;2 3 resolution) is defined by in-

verse box counting. Domains having more than 90% of

their area overlapping with the narrow coastal area are

considered as aligned with the coastline. The remaining

domains are shifted into the narrow coastal area without

changing their orientation. All domains that are again

overlapping by at least 90% are marked as detected. For

each of the remaining objects, three straight lines, two

from the tips and one from the center of the fit ellipse,

are drawn orthogonally in both directions of the major

axis. The distance from the origin to the next coastline

intersection for each straight line is measured. If the

standard deviation of the three distances is below a cer-

tain percentage of the mean distance, the contour is as-

sumed to be aligned with a coastline. The object is then

marked as aligned with the coast if the mean distance of

all corresponding straight lines is not greater than 500km.

All domains that have not been deletedmeet all of the

heuristics mentioned in section 3 and are finally labeled

as coastally influenced rainfall features.
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