7,503 research outputs found

    Perpendicular transport properties of YBa_2Cu_3O_{7-\delta}/PrBa_2Cu_3O_{7-\delta} superlattices

    Full text link
    The coupling between the superconducting planes of YBa2Cu3O{7-\delta}/ PrBa2Cu3O{7-\delta} superlattices has been measured by c-axis transport. We show that only by changing the thickness of the superconducting YBa2Cu3O{7-\delta} layers, it is possible to switch between quasi-particle and Josephson tunneling. From our data we deduce a low temperature c-axis coherence length of 0.27 nm.Comment: Presented at LT22, contains 2 pages and 2 figures. to appear in Physica

    Two-vibron bound states in alpha-helix proteins : the interplay between the intramolecular anharmonicity and the strong vibron-phonon coupling

    Full text link
    The influence of the intramolecular anharmonicity and the strong vibron-phonon coupling on the two-vibron dynamics in an α\alpha-helix protein is studied within a modified Davydov model. The intramolecular anharmonicity of each amide-I vibration is considered and the vibron dynamics is described according to the small polaron approach. A unitary transformation is performed to remove the intramolecular anharmonicity and a modified Lang-Firsov transformation is applied to renormalize the vibron-phonon interaction. Then, a mean field procedure is realized to obtain the dressed anharmonic vibron Hamiltonian. It is shown that the anharmonicity modifies the vibron-phonon interaction which results in an enhancement of the dressing effect. In addition, both the anharmonicity and the dressing favor the occurrence of two different bound states which the properties strongly depend on the interplay between the anharmonicity and the dressing. Such a dependence was summarized in a phase diagram which characterizes the number and the nature of the bound states as a function of the relevant parameters of the problem. For a significant anharmonicity, the low frequency bound states describe two vibrons trapped onto the same amide-I vibration whereas the high frequency bound states refer to the trapping of the two vibrons onto nearest neighbor amide-I vibrations.Comment: may 2003 submitted to Phys. Rev.

    Rotating superfluids in anharmonic traps: From vortex lattices to giant vortices

    Full text link
    We study a superfluid in a rotating anharmonic trap and explicate a rigorous proof of a transition from a vortex lattice to a giant vortex state as the rotation is increased beyond a limiting speed determined by the interaction strength. The transition is characterized by the disappearance of the vortices from the annulus where the bulk of the superfluid is concentrated due to centrifugal forces while a macroscopic phase circulation remains. The analysis is carried out within two-dimensional Gross-Pitaevskii theory at large coupling constant and reveals significant differences between 'soft' anharmonic traps (like a quartic plus quadratic trapping potential) and traps with a fixed boundary: In the latter case the transition takes place in a parameter regime where the size of vortices is very small relative to the width of the annulus whereas in 'soft' traps the vortex lattice persists until the width of the annulus becomes comparable to the vortex cores. Moreover, the density profile in the annulus where the bulk is concentrated is, in the 'soft' case, approximately gaussian with long tails and not of the Thomas-Fermi type like in a trap with a fixed boundary.Comment: Published version. Typos corrected, references adde

    Classical and quantum LTB model for the non-marginal case

    Full text link
    We extend the classical and quantum treatment of the Lemaitre-Tolman-Bondi (LTB) model to the non-marginal case (defined by the fact that the shells of the dust cloud start with a non-vanishing velocity at infinity). We present the classical canonical formalism and address with particular care the boundary terms in the action. We give the general relation between dust time and Killing time. Employing a lattice regularization, we then derive and discuss for particular factor orderings exact solutions to all quantum constraints.Comment: 23 pages, no figures, typos correcte

    Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized X-ray CT

    Get PDF
    We study recoverability in fan-beam computed tomography (CT) with sparsity and total variation priors: how many underdetermined linear measurements suffice for recovering images of given sparsity? Results from compressed sensing (CS) establish such conditions for, e.g., random measurements, but not for CT. Recoverability is typically tested by checking whether a computed solution recovers the original. This approach cannot guarantee solution uniqueness and the recoverability decision therefore depends on the optimization algorithm. We propose new computational methods to test recoverability by verifying solution uniqueness conditions. Using both reconstruction and uniqueness testing we empirically study the number of CT measurements sufficient for recovery on new classes of sparse test images. We demonstrate an average-case relation between sparsity and sufficient sampling and observe a sharp phase transition as known from CS, but never established for CT. In addition to assessing recoverability more reliably, we show that uniqueness tests are often the faster option.Comment: 18 pages, 7 figures, submitte

    Active split-ring metamaterial slabs for magnetic resonance imaging

    Full text link
    In this work, it is analyzed the ability of split-ring metamaterial slabs with zero/high permeability to reject/confine the radiofrequency magnetic field in magnetic resonance imaging systems. Using an homogenization procedure, split-ring slabs have been designed and fabricated to work in a 1.5T system. Active elements consisting of pairs of crossed diodes are inserted in the split-rings. With these elements, the permeability of the slabs can be automatically switched between a unity value when interacting with the strong excitation field of the transmitting body coil, and zero or high values when interacting with the weak field produced by protons in tissue. Experiments are shown for different configurations where these slabs can help to locally increase the signal-to-noise-ratio.Comment: 6 pages, 4 figure

    Comparing reverse complementary genomic words based on their distance distributions and frequencies

    Get PDF
    In this work we study reverse complementary genomic word pairs in the human DNA, by comparing both the distance distribution and the frequency of a word to those of its reverse complement. Several measures of dissimilarity between distance distributions are considered, and it is found that the peak dissimilarity works best in this setting. We report the existence of reverse complementary word pairs with very dissimilar distance distributions, as well as word pairs with very similar distance distributions even when both distributions are irregular and contain strong peaks. The association between distribution dissimilarity and frequency discrepancy is explored also, and it is speculated that symmetric pairs combining low and high values of each measure may uncover features of interest. Taken together, our results suggest that some asymmetries in the human genome go far beyond Chargaff's rules. This study uses both the complete human genome and its repeat-masked version.Comment: Post-print of a paper accepted to publication in "Interdisciplinary Sciences: Computational Life Sciences" (ISSN: 1913-2751, ESSN: 1867-1462

    Automated Grain Yield Behavior Classification

    Get PDF
    A method for classifying grain stress evolution behaviors using unsupervised learning techniques is presented. The method is applied to analyze grain stress histories measured in-situ using high-energy X-ray diffraction microscopy (HEDM) from the aluminum-lithium alloy Al-Li 2099 at the elastic-plastic transition (yield). The unsupervised learning process automatically classified the grain stress histories into four groups: major softening, no work-hardening or softening, moderate work-hardening, and major work-hardening. The orientation and spatial dependence of these four groups are discussed. In addition, the generality of the classification process to other samples is explored

    Structural and Magnetic Dynamics in the Magnetic Shape Memory Alloy Ni2_2MnGa

    Full text link
    Magnetic shape memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic and structural order. To study these correlations we use time resolved x-ray diffraction and magneto-optical Kerr effect experiments to measure the laser induced dynamics in a Heusler alloy Ni2_2MnGa film and reveal a set of timescales intrinsic to the system. We observe a coherent phonon which we identify as the amplitudon of the modulated structure and an ultrafast phase transition leading to a quenching of the incommensurate modulation within 300~fs with a recovery time of a few ps. The thermally driven martensitic transition to the high temperature cubic phase proceeds via nucleation within a few ps and domain growth limited by the speed of sound. The demagnetization time is 320~fs, which is comparable to the quenching of the structural modulation.Comment: 5 pages, 3 figures. Supplementary materials 5 pages, 5 figure
    • …
    corecore