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We study recoverability in fan-beam computed tomography (CT) with sparsity
and total variation priors: how many underdetermined linear measurements suf-
fice for recovering images of given sparsity? Results from compressed sensing
(CS) establish such conditions for example for random measurements, but not for
CT. Recoverability is typically tested by checking whether a computed solution
recovers the original. This approach cannot guarantee solution uniqueness and
the recoverability decision therefore depends on the optimization algorithm. We
propose new computational methods to test recoverability by verifying solution
uniqueness conditions. Using both reconstruction and uniqueness testing, we
empirically study the number of CT measurements sufficient for recovery on new
classes of sparse test images. We demonstrate an average-case relation between
sparsity and sufficient sampling and observe a sharp phase transition as known
from CS, but never established for CT. In addition to assessing recoverability
more reliably, we show that uniqueness tests are often the faster option.

Keywords: computed tomography; total variation; sparse regularization;
uniqueness conditions

AMS Subject Classifications: 44A12; 65R32; 68U10; 90C90; 94A08; 94A20

1. Introduction

Regularization methods for tomographic reconstruction that exploit sparsity have been in
the focus of research recently. Motivated by the theory of compressed sensing (CS) [1,2]
many papers proposed to use sparse or total variation (TV) regularization to compute tomo-
graphic reconstructions from underdetermined measurements.[3–5] One promising goal is
unchanged or even improved reconstruction quality from a significantly reduced sampling
effort, thereby lowering the necessary radiation dose in medical computed tomography (CT)
and scanning time in e.g. materials science and non-destructive testing.

Compressed sensing offers methodologies to predict under what circumstances it is
possible to compute exact reconstructions from underdetermined linear measurements.
Usually, these conditions depend both on the measurement matrix and on the signal class that
is considered. Roughly spoken, a standard result reads as follows: all vectors that are sparse
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1284 J.S. Jørgensen et al.

enough can be reconstructed exactly from underdetermined measurements with a random
matrix (e.g. all entries independently, identically Gaussian distributed) by computing the
solution of the linear system that has the smallest �1-norm.[6] There are also results [7]
that state exact recovery conditions for TV regularization.[8] An overview of CS recovery
guarantees can be found in [9]. It is generally acknowledged, however, that existing guaran-
tees either do not apply to or give extremely pessimistic bounds in deterministic sampling
contexts.[10] In particular for CT, [11–13] describe the lack of general guarantees, while
[11,12] derive preliminary average-case results for certain restricted special geometries
known as discrete geometry; however, these results do not cover regular sampling patterns
in CT, such as parallel-beam and fan-beam geometries.

In our recent work [13,14], we have been interested in establishing conditions on sparsity
and sampling levels sufficient for image recovery with regular CT sampling patterns. In
particular,[14] suggests a link between gradient sparsity and sufficient sampling for accurate
TV-reconstruction. In [13], we carried out empirical studies of the average sufficient number
of CT fan-beam projection views for �1-recovery as function of image sparsity. Using a phase
diagram similar to the Donoho-Tanner [15] phase diagram, we showed that �1-recovery
often admits sharp phase transitions as the sampling level is increased, and that the critical
sampling level increases with the number of image non-zeros.

The present work considerably expands on the results of [13] by addressing two lim-
itations. First, while �1-regularization is useful for CT, TV-regularization is often a more
successful sparsity prior for CT, because many objects have a piecewise constant appear-
ance. The present work extends to study recovery using anisotropic and isotropic TV-
regularization and as a step towards this proposes ways to generate images of a desired
gradient sparsity. Second, both �1 and TV reconstruction is possibly subject to non-unique
solutions. The approach of [13] considers an image to be uniquely recoverable if numerical
solution of the relevant optimization problem recovers the original image, but does not
consider whether the computed solution is unique. In the present work, we derive uniqueness
tests that can be used to computationally verify �1 and TV solution uniqueness. We then
compute phase diagrams using both reconstruction and uniqueness tests to verify the �1

recovery results from [13] and for anisotropic and isotropic versions of TV. In all cases, we
observe a pronounced average-case relation between sparsity and the sufficient sampling
level for recovery as well as a sharp phase transition. We also compare the reconstruction
and uniqueness test approaches in terms of computing time.

The paper is organized as follows. Section 2 describes the CT imaging model and
�1-norm and TV-regularization problems in study. Section 3 describes necessary and
sufficient conditions for solution uniqueness, while Section 4 presents our numerical
implementations of reconstruction and uniqueness tests. Section 5 describes how to gen-
erate test images with desired image or gradient sparsity. Section 6 presents our results
establishing empirically a relation between sparsity and the average sufficient sampling
level for recovery. Finally, Section 7 discusses the results and concludes the paper.

2. Sparse image reconstruction methods for computed tomography

2.1. Imaging model

Imaging by CT exploits that X-rays are attenuated when passing through matter. The
attenuation depends on the material traversed by the X-ray, as described by the so-called
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Inverse Problems in Science and Engineering 1285

linear attenuation coefficient μ, with denser materials generally attenuating more. The
intensities I0 and I of an X-ray before and after passing through an object with linear
attenuation coefficient μ(s), as function of the spatial coordinate s, can be modelled by
Lambert-Beer’s law, see, e.g. [16], which in a rearranged form reads

− log
I

I0
=

∫
L

μ(s)ds, (1)

where
∫

L μ(s)ds denotes the line integral along the line L describing the X-ray path. By
means of discretizing the object into n pixels and the data by assuming that m individual
X-rays with infinitesimal width are used, a fully discretized imaging model can be written
b = Ax. Here, x is a vector of length n of all pixel values stacked. A is an m-by-n matrix
of which the (i, j)th element, Ai j , equals the path length of the i th ray through pixel j ,
such that

∑
j Ai j x j approximates the line integral in (1) for ray i . Each ray only intersects

a small number of pixels (for a square
√

n-by-
√

n array of the order of
√

n), causing the
remaining Ai j values to be zero, see Figure 1 (right). b is a vector of length m with the
log-transformed data, i.e. bi = − log(Ii/I0) for rays i = 1, . . . , m.

In the present work, we consider two-dimensional fan-beam geometry with equiangular
projection views acquired from 360◦ around the image, see Figure 1 (left). Due to rotational
symmetry, we consider the image to be the largest inscribed disc within a square Nside-by-
Nside pixel array, hence consisting of n ≈ π/4 · N 2

side pixels. The source-to-rotation-centre
distance is set to 2Nside and the detector has the shape of a circular arc centred at the source
and consists of 2Nside detector elements. The number of projection views is denoted Nv
and the fan angle is set to 28.07◦ so that precisely the inscribed disc is covered. The total
number of linear measurements is m = Nv · 2Nside and the m-by-n system matrix A is
computed using the function fanbeamtomo in the MATLAB package AIR Tools.[17]

Note that the matrix A is both structured and sparse and hence fundamentally different
from matrices typically considered in CS, e.g. fully dense matrices with independent

1 9 17 25 33 41 49 57 64

1

17

33

48

Figure 1. Example of CT scanning geometry (left) and corresponding system matrix A (right). The
square side length is Nside = 8 pixels causing n = 52 pixels in the disc-shaped domain. A total
of Nv = 3 equiangular projection views each of 16 rays are shown, i.e. in total m = 48 rays. The
system matrix is sparse, zero-valued entries are shown light gray (right) and increasing path lengths
are shown increasingly dark. White columns are to be masked out due to corresponding pixels being
outside the disc-shaped domain (12 white pixels, left).
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1286 J.S. Jørgensen et al.

identically distributed Gaussian entries. We can determine the approximate fraction of non-
zeros in the m × n CT system matrix A to O(1/Nside), as each of the m rays intersect
O(Nside) pixels. In this paper, we only discuss undersampling by taking few projection
views, i.e. small Nv, while the number of rays per projection remains constant, since this
is the most straightforward way to undersample in practice using existing CT-scanners.
However, other undersampling strategies could be treated analogously.

Taking only few CT measurements amounts to having an underdetermined linear system
Ax = b. The non-trivial nullspace of A means that a given data vector b does not specify a
unique solution, which is clearly unacceptable. In the very undersampled scenario, standard
CT reconstruction methods such as filtered back-projection and the algebraic reconstruction
technique produce highly noisy and artifact-containing reconstructions.[18] This motivates
the use of regularization, which is the topic of the following section.

2.2. Sparse regularization

In the context of an underdetermined system b = Ax, A ∈ R
m×n , m < n, one obtains

a whole affine space of solutions. One selects one solution of this space by considering a
regularization functional R, and computing the minimum-R solution, i.e. the solution of

min
x

R(x) subject to Ax = b.

In the present work, we study �1-norm (L1), anisotropic TV (ATV), and isotropic TV (ITV)
regularization. First, the �1-norm, defined as

L1 : R(x) = ‖x‖1 =
∑

j

|x j |, (2)

enforces sparsity of the minimizer. �1-norm minimization forms one backbone of com-
pressed sensing and the problem of computing minimum-�1-norm solution of underdeter-
mined systems is also known as Basis Pursuit.[19]

Second, anisotropic TV can be written using a set of vectors di , i = 1, . . . , N (of length
n as x) and the matrix D = [d1, . . . , d N ] as

ATV : R(x) = ‖DT x‖1 =
N∑

i=1

|dT
i x|. (3)

The matrix D is called dictionary in this context and the minimum-R solution is seeking
a solution in which inner products with the dictionaries entries form a sparse vector, for
example, to enforce sparsity in the coefficients of a wavelet basis or a dictionary learned from
training images. We use ATV to denote the general case but focus in the present work on the
anisotropic TV, which is a special case where DT contains finite-difference approximations
of the horizontal and vertical derivatives in each pixel, i.e. N = 2n. However, we emphasize
that all our theoretical results hold in the general case.

In our experiments in Section 6, we use simple forward differences, i.e. assuming
column-wise ordering of pixels and a Nside × Nside domain, dT

i x equals xi+1 − xi and
xi+Nside − xi for vertical and horizontal derivatives, respectively, for non-boundary pixels.
We set Neumann boundary conditions by replacing differences across the boundary by zero.
The combined matrix DT is adapted to the disc-shaped domain by straightforward masking.
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Inverse Problems in Science and Engineering 1287

Third, isotropic TV can be written as a special case of the group sparsity problem.[20]
This problem differs in a small but crucial point from ATV: Here, we do not simply take
the �1-norm of DT x as objective function, but we take a mixed �1,2-norm. To fix notation,
consider a linear mapping D : R

r×p → R
n , i.e. the transposed map is DT : R

n → R
r×p,

where r is the number of groups and p is the number of pixels in each group. For Y ∈ R
r×p

we consider the mixed �1,2-norm

‖Y‖1,2 =
r∑

i=1

‖Y i‖2 =
r∑

i=1

⎛
⎝ p∑

j=1

|Y i, j |2
⎞
⎠

1/2

,

where Y i ∈ R
p denotes the i-th row of Y . We then set

ITV : R(x) = ‖DT x‖1,2 =
r∑

i=1

‖
(
DT x

)
i
‖2. (4)

We use ITV to denote the general case but focus in the present work on the isotropic TV,
for which we take each group to be the horizontal and vertical finite-difference partial-
derivative approximations in each pixel, i.e. p = 2 and r = n. Again, our theoretical results
hold in the general case.

Note that in the TV case, i.e. finite differences, the matrix D in ATV and linear mapping
D : R

n×2 → R in ITV are closely related, namely

(DT x)i =
[

dT
i x, dT

i+n x
]

for all i ≤ n, (p = 2 and r = n)

where (·)i denotes the i th column of the argument.

3. Necessary and sufficient conditions for uniqueness of minimizer

In this section, conditions for the uniqueness of the considered optimization problems are
introduced. We use the following notation. The complement of an index set I ⊂ {1, . . . , n}
is denoted as I c = {1, . . . , n}\I . If A ∈ R

m×n , m < n, then AI denotes the submatrix of A
with columns indexed by I . The transposed of such a submatrix is denoted byAT

I . The range
of a matrix is denoted rg(A) = {Ax : x ∈ R

n}. The signum function is denoted sign(·)
and defined to −1, 0 and 1 for negative, zero and positive arguments and its application to
vectors is done component-wise.

3.1. Uniqueness conditions for L1

The following theorem gives necessary and sufficient conditions for a vector x∗ to solve
L1 uniquely.

Theorem 3.1 ([21]) Let A ∈ R
m×n with m < n and x∗ ∈ R

n with I = supp (x∗). Then
x∗ is the unique solution of

L1 : min
y

‖ y‖1 subject to A y = Ax∗ (5)

if and only if
ker (AI ) = {0} (6)
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1288 J.S. Jørgensen et al.

and there exists w ∈ R
m such that

AT
I w = sign

(
x∗)

I , ‖AT
I cw‖∞ < 1. (7)

Proof See [21]. �

The theorem has two important consequences: first, the recoverability of a vector x∗
only depends on its sign pattern, not the magnitude of its entries. Second, to know if some
vector x∗ can be recovered from the measurement Ax∗ (for some given, fixed A), one only
needs to check the existence of a vector w ∈ R

m such that the equality and the inequality
from (7) are fulfilled. As we will show in Section 5, this can be done by solving an m-
dimensional linear program. Since the vector w is related to the dual optimization problem
of (5), it will be called dual certificate in the following.

A seemingly different necessary and sufficient condition for x∗ being the unique L1
solution given in [22] is the existence of a vectorw such thatAT

I w = sign(x∗)I ,‖AT
I cw‖∞ ≤

1 and that AJ is injective where J = { j ∈ {1, . . . , n} | |(AT w) j | = 1}. This condition may
appear weaker but, in fact, is shown in [22] to be equivalent to the conditions in Theorem
3.1 and we do not use it any further.

3.2. Uniqueness conditions for ATV

We extend the previous result to the ATV case through a straightforward generalization
of Theorem 3.1. The following theorem basically adapts the result in [23] and follows the
proof of the main result in [22]. Similar conditions are given in [24].

Theorem 3.2 Let A ∈ R
m×n with m < n, D ∈ R

n×N and x∗ ∈ R
n with I = supp

(
DT x∗).

Then it holds that x∗ is the unique solution of

ATV : min
y

‖DT y‖1 subject to A y = Ax∗ (8)

if and only if

ker(A) ∩ ker
(

DT
I c

)
= {0} (9)

and there exists w ∈ R
m and v ∈ R

N such that

Dv = AT w, v I = sign
(

DT
I x∗) , ‖v I c‖∞ < 1.

Proof The proof is separated into two parts, each for one direction. First, it will be shown
that x∗ is the unique solution under the given conditions. For each y ∈ R

n with y 
= x∗ and
A y = Ax∗ it holds that DT

I c y = DT
I c( y − x∗) 
= 0 since y − x∗ is a non-trivial null space

element of A and (9) is provided. Further, with s = sign
(
DT x∗), the remaining conditions

imply

‖DT x∗‖1 = sT DT x∗ = (Dv)T x∗ = wT Ax∗ = wT A y = vT DT y

≤ ‖v I ‖∞︸ ︷︷ ︸
=1

‖DT
I y‖1 + ‖v I c‖∞︸ ︷︷ ︸

<1

‖DT
I c y‖1 < ‖DT y‖1.
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Inverse Problems in Science and Engineering 1289

As a result of (9), the latter inequality is truly strict, see above. This proves the conditions
to be sufficient for ATV uniqueness.

Let us assume the vector x∗ solves the considered optimization problem uniquely. Since
the optimization problem (8) is piecewise linear, for all h ∈ ker(A)\{0} it holds that

0 < lim
t→0,t>0

1

t

[
‖DT (x∗ + t h)‖1 − ‖DT x∗‖1

]
=

∑
i∈I

sign
(

dT
i x∗) dT

i h +
∑
i∈I c

|dT
i h|,

and, since the latter inequality holds for all non-trivial null space elements, in particular
−h, it holds that ∣∣∣∣∣

∑
i∈I

sign
(

dT
i x∗) dT

i h

∣∣∣∣∣ <
∑
i∈I c

|dT
i h|. (10)

Moreover, it holds DT
I c h 
= 0 which implies (9).

Finally, the rest of the conditions will be proved. Choose η ∈ R
N with ηi = sign

(
dT

i x∗)
for i ∈ I and η j = 0 for j /∈ I and assume DT η is not an element of the range of AT –
otherwise the proof would be finished. Let ker A be p-dimensional and {w(l)}1≤l≤p be a
basis of ker A with 1 = ηT DT w(l); it holds that

1 = ηT DT w(l) =
∑
i∈I

sign
(

dT
i x∗) dT

i w(l) for all 1 ≤ l ≤ p.

In the following, a vector ξ̃ ∈ R
N will be constructed such that ξ̃

T
DT w(l) = −1 holds

for all 1 ≤ l ≤ p; hence, the vector D(η + ξ̃) is an element of the range of AT due to its
orthogonality to the null space of A. Consider a solution ξ̃ ∈ R

N of the problem

min
ξ∈RN

max
j∈I c

|ξ j | subject to ξ T DT w(l) = −1 for all 1 ≤ l ≤ p

and q∗ ∈ R
p as a solution of its dual problem

min
q∈Rp

−
p∑

i=1

qi subject to
∑
j∈I c

∣∣∣∣∣
p∑

l=1

ql d
T
j w(l)

∣∣∣∣∣ ≤ 1,

then for all 1 ≤ l ≤ p it holds that

max
j∈I c

|ξ̃ j | =
∣∣∣∣∣

p∑
i=1

q∗
i

∣∣∣∣∣ =
∣∣∣∣∣
∑
i∈I

sign
(

dT
i x∗) dT

i

p∑
i=1

q∗
i w

(l)

∣∣∣∣∣ <
∑
j∈I c

∣∣∣∣∣
p∑

l=1

q∗
l dT

j w(l)

∣∣∣∣∣ ≤ 1,

since
∑p

i=1 q∗
i w

(l) satisfies (10). Hence, the element v = ξ̃ +η satisfies v I = sign(DT
I x∗)

and ‖v I c‖∞ < 1 and Dv is an element of the range of AT . This proves the remaining
conditions as necessary. �

We also call the pair (v,w) of vectors a dual certificate for ATV. Note that adding a
kernel element of DT does not affect the property of being uniquely recoverable by ATV:

Corollary 3.3 In the setting of Theorem 3.2, let h ∈ ker
(
DT

)
and let x∗ be the unique

solution of (8). Then x̃ = x∗ + h is also a unique solution of (8), with x∗ replaced by x̃.
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1290 J.S. Jørgensen et al.

Proof Just note that supp
(
DT x∗) = supp(DT x̃) and that if (v,w) is a dual certificate for

x∗ it is also a dual certificate for x̃. �

3.3. Uniqueness conditions for ITV

The following theorem gives sufficient conditions on A, D and x∗ such that x∗ is the unique
ITV solution; a similar result is given in [25,26] but we include this result with full proof
for the sake of completeness.

Theorem 3.4 Let A ∈ R
m×n, m < n, D : R

r×p → R
n and x∗ ∈ R

n and denote by
I = {i ∈ {1, . . . r} : (DT x∗)i 
= 0}. Then it holds that x∗ is the unique solution of

ITV : min
y

‖DT y‖1,2 subject to A y = Ax∗ (11)

if there exists w ∈ R
m and Y ∈ R

r×p such that DY = AT w and

(1) there exists Y ∈ R
r×p such that

Y i =
(DT x∗)

i∥∥(DT x∗)
i

∥∥
2

for i ∈ I, ‖Y i‖2 < 1 for i /∈ I

and
(2) with S = {

v ∈ R
n : (DT v

)
i = 0 for i /∈ I

}
it holds that Av = A y implies y = v

for all y, v ∈ S.

Proof On R
r×p we have the usual inner product 〈Y , Z〉 = ∑r

i=1
∑p

j=1 Y i j Zi j . Then it
holds for the Y defined above that∥∥∥DT y

∥∥∥
1,2

= 〈Y ,DT y〉 = 〈DY , y〉 = 〈AT w, y〉 = 〈w,A y〉.

Also note that obviously, y ∈ S.
Now consider a vector v ∈ R

n that is feasible for (11), i.e. it holds that Av = Ax∗. If v

would be an element of S, then, by assumption, v = x∗. Hence, if v 
= y, then v /∈ S, i.e.
there is at least one index i0 /∈ I such that

(DT v
)

i0

= 0. Consequently, we get

∥∥∥DT x∗
∥∥∥

1,2
= 〈w,A y〉 = 〈w,Av〉 = 〈AT w, v〉 = 〈DY , v〉

=
r∑

i=1

Y i ·
(
DT v

)
i

[‘ · ’ denotes the inner product in R
d ]

≤
r∑

i=1

‖Y i‖2

∥∥∥(
DT v

)
i

∥∥∥
2

= ∥∥Y i0

∥∥
2︸ ︷︷ ︸

<1

∥∥∥∥
(
DT v

)
i0

∥∥∥∥
2︸ ︷︷ ︸

>0

+
∑
i 
=i0

‖Y i‖2︸ ︷︷ ︸
≤1

∥∥∥(
DT v

)
i

∥∥∥
2

<

r∑
i=1

∥∥∥(
DT v

)
i

∥∥∥
2

=
∥∥∥DT v

∥∥∥
1,2

.

In other words, every feasible v different from x∗ has a larger objective value. �
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Note that the conditions in Theorem 4 are basically similar to the ones in Theorem 3,
when interpreted correctly: the second condition in Theorem 4 can be written as ker A ∩
ker(D∗

I c ) (with the correct interpretation of the set I c) and the second resembles the condition
that the vector w from Theorem 3 has to be equal to the signum of

(
DT x∗) on I and smaller

than one otherwise if one interprets the fraction (DT x∗)i
‖(DT x∗)i ‖2

as the signum of the vector

(DT x∗)i . However, for p > 1, the conditions in Theorem 3.4 are in general not necessary1.
Whereas geometrical interpretations of the conditions in Theorem 3.2 for ATV and

Theorem 3.4 for ITV are difficult to establish and may require a high level of comprehension,
the L1 conditions in Theorem 3.1 can be explained easily. For, say, a full rank matrix
A ∈ R

m×n with m < n and x∗ ∈ R
n with I = supp(x∗) and |I | = k ≤ m, the conditions (7)

can be seen as the intersection of the affine space rg(AT ) with the n-dimensional hypercube
[−1,+1]n . Indeed, the affine space cuts the interior of an (n − k)-dimensional face of the
hypercube; which face is sliced depends on the sign pattern of x∗.

4. Numerical implementation of reconstruction and uniqueness tests

4.1. Reconstruction problems

The three regularized reconstruction problems, L1, ATV and ITV are solved numerically by
a primal-dual interior-point method using MOSEK [27]. Our motivation for this choice of
method is to ensure that the optimization problem is solved accurately. MOSEK achieves
this by producing a certificate of optimality for the returned numerical solution, i.e. a primal-
dual solution pair with duality gap numerically close to zero.

Across the large number of optimizations done for the present study, it is our experience
that other methods such as accelerated first-order methods [28,29] and primal-dual meth-
ods [30,31] are less reliable in actually arriving at a solution of the equality-constrained
problem accurate enough to reliably assess whether it is equal to the original image.

We solve L1 as a linear program (LP) by introducing q ∈ R
n to bound x:

min
x,q

1T q subject to Ax = b and − q ≤ x ≤ q. (12)

In a similar fashion, ATV can be solved as an LP. By defining z = DT x and using q for
bounding z we can solve the problem as

min
x,z,q

1T q subject to Ax = b and z = DT x and − q ≤ z ≤ q. (13)

ITV can be recast as a conic optimization problem, which can also be solved by MOSEK.
Again, we introduce the bounding vector q ∈ R

n and can solve the problem as

min
x,q

1T q subject to Ax = b and

∥∥∥∥
(
DT x

)
j

∥∥∥∥
2

≤ q j for j = 1, . . . , n,

(14)
in which each of the n inequalities specify a quadratic conic constraint.

4.2. Uniqueness tests

As stated by Theorem 3.1, we can show that x∗ is the unique L1 minimizer if and only if
AI is injective and there exists a w ∈ R

m such that AT
I w = sign(x∗)I and ‖AT

I cw‖∞ < 1.
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1292 J.S. Jørgensen et al.

Injectivity is tested by evaluating whether AI has full column rank. The second condition
can be tested by minimizing ‖AT

I cw‖∞ with respect to w while respecting the equality
constraint AT

I w = sign(x∗)I . By splitting the infinity-norm into a two-sided inequality
constraint, this problem can be solved as an LP,

min
t,w

t (15)

subject to − t1 ≤ AT
I cw ≤ t1 (16)

AT
I w = sign(x∗)I , (17)

which we accomplish by use of MOSEK’s primal-dual interior-point method. For the
optimal solution (t�,w�), by definition, we have the smallest possible t = ‖AT

I cw‖∞.
If t� is not smaller than one, then no w exists with smaller t . We therefore declare x∗ the
unique minimizer if t < 1, and if t ≥ 1, x∗ cannot be the unique minimizer. Numerically,
we test whether t� < 1 − ε for ε = 10−5 to ensure that the inequality is satisfied strictly.
Technically, by doing this, we risk falsely rejecting solution uniqueness of some x∗, namely
the ones for which 1 − ε < t� < 1. However, we found the decision on uniqueness to be
robust to other choices of ε, so we believe this is not a problem in practice.

Regarding ATV, we can show solution uniqueness of a vector x∗ by use of Theorem 3.2.
The condition of zero-intersection of ker(A) and ker(DT

I c) can be checked numerically
by evaluating whether the matrix (A; DT

I c) has full rank, where semicolon means vertical
concatenation. Similar to the L1 case, the second condition can be tested by solving in
MOSEK the LP,

min
t,v,w

t (18)

subject to − t1 ≤ v I c ≤ t1 (19)

AT
I w = DI v I + DI cv I c (20)

v I = sign(DT
I x∗), (21)

and assessing whether the optimal t� is smaller than 1 − ε.
For isotropic TV we can show solution uniqueness by use of Theorem 3.4. We let Y I

and Y I c denote Y restricted to rows I and I c, and similarly for DI and DI c . Given x∗ we
construct a Y and a w satisfying the requirements by solving the conic program

min
t,Y ,w

t (22)

subject to DI c Y I c − AT w = −DI Y I (23)

Y i =
(DT x∗)

i∥∥(DT x∗)
i

∥∥
2

for i ∈ I (24)

‖Y i‖2 ≤ t for i ∈ I c. (25)

If the optimal value t� is greater than 1 − ε, then part (1) of Theorem 3.4 is not fulfilled and
we cannot show uniqueness. If instead t� < 1 − ε we proceed to part (2).

The set S can be equivalently described as the kernel of DT
I c . Letting K denote a matrix

of basis vectors of the kernel, any v ∈ S can be represented using a coefficient vector c
such that v = Kc. We numerically test the injectivity requirement of A on S by evaluating
whether AK has full column rank. If true, we have shown solution uniqueness.
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5. Generation of sparse test images

5.1. Images for L1

The spikes class will be used to test for exact recovery of sparse images from tomographic
measurements by L1 (2). Since we are interested in recovery in dependence on the sparsity,
we follow the usual approach [32] and build test images consisting of a given number of
spikes at random positions and with entries sampled from a uniform distribution on [0, 1].
The spikes images hence are non-negative. We also consider a signed version, signed-
spikes, with the only difference that entries are sampled from the uniform distribution on
[−1, 1]. Figure 2 shows example images of each class at a range of relative sparsity values.

5.2. Images for ATV

For ATV, we wish to generate test images having a prescribed value of ‖DT x‖0, where ‖·‖0
is the cardinality. Due to the operator, this is a less trivial task than in the directly sparse case.
For certain operators, this can be accomplished using a technique from [33] but as pointed
out in that work, the technique does not apply to the finite-difference operator DT . Here,
we present two methods for this purpose. The first method, truncated-uniform, produces
test images that in expectation achieve the target sparsity, while the second, alternating-
projection, produces test images of precisely the target sparsity.

5.2.1. The truncated-uniform class

The truncated-uniform class produces images x according to the following heuristic.
Given a target number of non-zeros k of the length-N vector DT x, where DT has |Bc| rows
that do not correspond to differences across the image boundary, and a number F , which is
the number of gray values in the image, satisfying

k ≤ |Bc| F − 1

F
, (26)

do the following:

Figure 2. Top: Realization of images from the spikes class of relative sparsity κ = k/n values 0.1,
0.3, 0.5, 0.7, 0.9, grey-scale [0, 1]. Bottom: The same for the signed-spikes class, grey-scale [−1, 1].
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1294 J.S. Jørgensen et al.

(1) Compute ω = (1 − √
1 − k F/(|Bc|(F − 1)))/F .

(2) Partition the interval [0, 1] into F intervals I1, . . . , IF where intervals � = 1, . . . ,

F − 1 have widths ω� = ω and the last one has width ωF = 1 − (F − 1)ω, i.e. the
intervals are I� = [(� − 1)ω, �ω[ for � = 1, . . . , F − 1 and IF = [(F − 1)ω, 1].
Denote by f� the midpoint of the �-th interval.

(3) Assign for every pixel the value f� with probability ω�.

The following lemma shows that the outcome of this method is an image that in expectation
has k non-zeros after application of DT as desired:

Lemma 5.1 Let x be generated by the three steps above and denote z = DT x. Then the
expected value of the number of non-zero entries in z is k.

Proof With the described procedure, the j th entry of x, j = 1, . . . , n is a scalar stochastic
variable X j , and the corresponding vector stochastic variable X has independent, identically
distributed (i.i.d.) elements. We consider also the vector stochastic variable Z = DT X and
the vector stochastic indicator variable δ with elements

δi =
{

1 if Zi 
= 0,
0 if Zi = 0,

i = 1, . . . , N .

The total number of non-zeros in Z is described by the scalar stochastic variable

δtotal =
N∑

i=1

δi ,

of which we derive the expected value E(δtotal). Using linearity of expectation and that

E(δi ) = 0 · P(Zi = 0) + 1 · P(Zi 
= 0) = P(Zi 
= 0), i = 1, . . . , N ,

we get

E(δtotal) =
N∑

i=1

P(Zi 
= 0). (27)

To compute P(Zi 
= 0) we distinguish between two cases: Zi is a finite difference either
(1) across the boundary or (2) in the interior of the image. Formally, we partition the indices
{1, . . . , N } into a boundary set B and a complementary interior set Bc.

In case (1), i ∈ B, the choice of boundary conditions (BCs) affects the probability in
question. Assuming Neumann BCs, each finite difference across the boundary is zero, i.e.
P(Zi 
= 0) = 0 for i ∈ B corresponding to a zero row in DT at indices B. Equivalently,
these rows can be removed from DT , leaving B empty. Assuming zero BCs instead, the
probability is instead equal to 1, since Zi can only be zero, if the pixel value in question is
0, which happens with probability 0. In this paper, we do not consider zero BCs more.

In case (2), we apply the law of total probability over the set { f1, . . . , fF },

P(Zi 
= 0) =
F∑

�=1

P(Zi 
= 0|X ĩ = f�)P(X ĩ = f�),
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Inverse Problems in Science and Engineering 1295

where ĩ denotes the index of the pixel at which Zi is evaluated. From step (3), we know
that the probability that a given pixel value is f� equals ω�. For the conditional probability,
we note that Zi is computed as the difference between Xĩ and a neighboring pixel’s value.
Since the pixel values are independent, and since X ĩ is given to be in the �th interval, the
probability of having a non-zero Zi equals the probability of the neighbouring pixel’s value
being outside interval �, which is 1 − ω�. Hence,

P(Zi 
= 0) =
F∑

�=1

(1 − ω�)ω� =
F−1∑
�=1

(1 − ω)ω + (1 − ωF )ωF

= (F − 1)ω(2 − Fω) for i ∈ Bc.

Inserting the two cases into (27) yields

E(δtotal) = |Bc|(F − 1)ω(2 − Fω).

Since we want E(δtotal) = k, we solve this quadratic equation for ω. The smaller of the two
solutions guarantees that the sum of all widths is not greater than 1 and is precisely ω from
step (1). Further, for ω to be real-valued we require (26). �

For the case Nside = 64, we get n = 3228 pixels within the disc-shaped mask. For ATV
with Neumann BCs and keeping zero-rows of DT we have N = 2n. Due to convexity of
the disc-shaped mask, we can explicitly compute |Bc| = 2n − 2Nside. In our numerical
studies, we wish to study images sampled from the entire sparsity range between κ = 0
and κ = 2 with the maximal relative sparsity of 1.9. By taking F = 40 we can achieve
images x with sparsity of k = 6169 of DT x. This corresponds to a relative sparsity of
κ = k/n = 1.911. Examples of truncated-uniform images are shown in Figure 3 for a
range of relative sparsity values.

5.2.2. The alternating-projection class

Since the truncated-uniform class consists of images of a special structure (namely, they
have a prescribed number of different grey levels) it may be that they also introduce a
special behaviour in the recoverability. Hence, we will consider also a different class of test
images. Our goal is again to produce images x such that ‖DT x‖0 = k. We reformulate the
problem as follows: Find a vector v such that v is in the range of DT and that ‖v‖0 = k.
If we have found such a v, then we get a suitable test image x by solving DT x = v. For a
method to construct such a v, we are inspired by the feasibility problem

find v ∈ rg DT ∩ {‖ · ‖0 ≤ k}.
Although the set we are looking at is the intersection of a convex with a non-convex one,
recent results indicate that an alternating projection approach may work.[34] Hence, we
perform the following iteration:

(1) Choose a random starting point v0 ∈ R
N ; set j = 0.

(2) Set v j+ 1
2 as orthogonal projection of v j onto rg DT . With the help of the pseudoin-

verse
(
DT

)†
of DT this is written as v j+ 1

2 = DT
(
DT

)†
v j .
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1296 J.S. Jørgensen et al.

Figure 3. Top: A set of truncated-uniform images of relative sparsity κ = k/n values 0.2, 0.6, 1.0,
1.4, 1.8, gray-scale [0, 1]. Middle: A set of alternating-projection (anisotropic) images of relative
sparsity values 0.2, 0.6, 1.0, 1.4, 1.8, gray-scale [−1, 1]. Bottom: A set of alternating-projection
(isotropic) images of relative sparsity values 0.1, 0.3, 0.5, 0.7, 0.9, gray-scale [−1, 1].

(3) Set v j+1 as orthogonal projection of v j+ 1
2 onto the set {‖ · ‖0 ≤ k}: Keep the

largest k entries of v j+ 1
2 and set the rest to zero. If the projection yields fewer than

k non-zeros, project v j+ 1
2 on a set with higher sparsity.

(4) If converged, set x = (
DT

)†
v j+1; otherwise increment j and go to step 2.

If the method converges, it is guaranteed to produce an image x with the desired
properties. However, in practice, it does not always convergence. Hence, we perform a
maximum number of iterations (in the range of a few thousands) and if we do not observe
convergence to a feasible point v, we restart the method with a different initial point.
Typically, we found that only a few restarts sufficed for producing a desired image.

We also consider a non-negative version, alternating-projection-nonneg, for which
an image is generated from an alternating-projection image by shifting all pixel values
by the smallest possible positive scalar such that all pixel values become non-negative.

5.3. Images for ITV

For isotropic TV, we basically proceeded similarly to alternating-projection. However,
here we considered the feasibility problem

find Y ∈ rg DT ∩ {‖ · ‖0,2 ≤ k},
where ‖ · ‖0,2 counts the number of rows with non-zero �2-norm. Note that the latter set
are the images x for which the Euclidean norm of the gradient has only k non-zero entries.
Hence, we modify the iteration to:
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Inverse Problems in Science and Engineering 1297

(1) Choose a random starting point Y 0 ∈ R
r×p; set j = 0.

(2) Set Y j+ 1
2 as orthogonal projection of Y j onto rg DT . With the help of the pseu-

doinverse (DT )† of DT this is written as Y j+ 1
2 = DT (DT )†Y j .

(3) Set Y j+1 as orthogonal projection of Y j+ 1
2 onto the set {‖ · ‖0,2 ≤ k}: Keep the k

rows of Y j+ 1
2 with largest 2-norm and set the rest to zero. If the projection yields

fewer than k non-zero rows, project Y j+ 1
2 on a set with higher sparsity.

(4) If converged, set x = (DT )†Y j+1; otherwise increment j and go to step 2.

Examples of both anisotropic and isotropic alternating-projection images are shown
in Figure 3 for a range of relative sparsity values. The relative sparsity values for anisotropic
are chosen as twice the isotropic ones to enable a rough comparison between images from
each class of ‘comparable’ sparsity.

6. Numerical experiments

As in [13], we wish to show empirically that CT image reconstruction by sparsity-exploiting
methods admit sharp phase transitions as known from compressed sensing. The results in
[13] only covered L1. Here, we extend to ATV and ITV and construct phase diagrams by
solving the reconstruction problem as well as the uniqueness tests.

6.1. Phase diagrams for L1

In [13] it was found that reconstruction by �1-minimization for spikes images yields a sharp
phase transition. Here, through uniqueness testing we verify this result and further extend
to the class signed-spikes with signed entries.

We consider images of size Nside = 64 and at each relative sparsity value κ =
k/n = 0.025, 0.05, 0.1, 0.2, 0.3, . . . , 0.9 we generate 100 instances. For each instance
x∗, we generate synthetic CT data b = Ax∗ corresponding to Nv = 1, . . . , 32 equiangular
projection views, in accordance with the scanning geometry described in Section 2.1. The
system matrix A is generated by the function fanbeamtomo from the MATLAB package
AIR Tools.[17] All considered matrices have between 1.5 and 2.0% non-zeros, in agreement
with the estimate from Section 2.1. At Nv ≤ 25 the linear system is underdetermined, while
at Nv ≥ 26 the system matrix A has full rank and x∗ is the unique solution no matter its
sparsity. We therefore use N suf

v = 26 as a reference point of full sampling at Nside = 64 and
define the relative sampling μ = Nv/N suf

v . For each data-set, reconstruction and uniqueness
test are run. If the relative error of the computed solution xL1 w.r.t. x∗ is sufficiently small,
i.e. ‖xL1 − x∗‖2/‖x∗‖2 < ε with ε = 10−4, we declare the original perfectly recovered.

Figure 4 shows, for both the spikes and the signed-spikes classes, reconstruction and
uniqueness testing phase diagrams: each rectangle corresponds to the relative sparsity value
κ at its left and the relative sampling μ at its bottom and the colour indicates the fraction
of instances perfectly recovered by reconstruction or deemed the unique solution by the
uniqueness test. The phase diagrams are divided into a ‘full-recovery’ regime, in which all
instances are uniquely recovered, and a ‘no-recovery’ regime, where all instances fail to
be recovered/be unique. Further, the transition from no-recovery to full-recovery is sharp,
in the sense that for all relative sparsity values adding 1–2 projection views changes the
recovery rate from 0% to 100%.
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1298 J.S. Jørgensen et al.

Figure 4. Phase diagrams for L1: Fraction of instances recovered/deemed unique solution as function
of relative sparsity κ and relative sampling μ. Each rectangle corresponds to the κ-value at its left
and μ-value at its bottom. Top row: reconstruction, bottom row: uniqueness test. Left: spikes, center:
signed-spikes, right: average sufficient relative sampling point along with a 99% confidence interval
at each κ-value. For both classes, reconstruction and uniqueness testing agree perfectly. For signed-
spikes, the average relative sufficient sampling curve is higher than for spikes meaning that more
projections are needed for recovery.

For both spikes and signed-spikes, the uniqueness test phase diagrams are identical to
the reconstruction phase diagrams, thereby mutually verifying correctness of each method
and the attained phase diagrams.

The phase transition occurs at different sampling levels for the spikes and signed-spikes
classes. This is perhaps more easily seen in the right-most plot in Figure 4 in which the
average relative sampling sufficient for recovery, i.e. the smallest value of μ at which all
instances of a given sparsity are recovered, is plotted for both classes along with error bars
for the 99% confidence intervals. On average signed-spikes require more projection views
for unique recovery. This is perhaps not surprising, as having negative pixel values can lead
to negative entries in the data vector b, something that can not happen with non-negative
pixel values due to the elements of A being non-negative. Nevertheless, the phase diagram
reveals quantitatively how signed entries affect recoverability.

6.2. Phase diagrams for ATV

In the same way as for L1, we create reconstruction and uniqueness test phase diagrams for
ATV. We consider first the alternating-projection class as well as its non-negative version
alternating-projection-nonneg. As the sparsity is measured after application of DT , the
relative sparsity can now be in the range between 0 and 2, and in addition to the κ values
in the previous section, we include now κ = 1.0, 1.1, . . . , 1.9.
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Inverse Problems in Science and Engineering 1299

Figure 5. Phase diagrams for ATV. Top row: reconstruction, middle row: uniqueness test.
Left: alternating-projection-nonneg, right: alternating-projection. Bottom row: average relative
sufficient sampling point along with a 99% confidence interval at each κ-value. No difference between
classes is seen, unlike the L1 case.

The resulting reconstruction and uniqueness test phase diagrams are shown in Figure 5.
As for L1, we see a partition into ‘full-recovery’ and ‘no-recovery’ regimes separated by a
sharp phase transition across 1–2 projection views. The uniqueness test phase diagrams are
identical to the reconstruction phase diagrams, except for a few cases in the transition region,
for example for the smallest κ values for alternating-projection-nonneg. We explain these
minor differences by the choice of numerical threshold for assessing recovery that is chosen
a priori to a constant ε.

Contrary to the L1 case, we know from Corollary 3.3 that non-negativity should not
change the ATV recoverability: any signed vector can be made non-negative by adding a
constant vector, and the constant vectors make up the kernel of DT in the anisotropic TV
case. Figure 5 confirms this experimentally, since the phase diagrams for the signed and
non-negative image classes are identical.

To study whether the phase diagrams depend on the image class we repeat the experiment
for the truncated-uniform image class. The resulting reconstruction and uniqueness testing
phase diagrams are shown in Figure 6.Again, the two phase diagrams are identical and show
a sharp phase transition from the no-recovery to the full-recovery regime. As can be seen
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1300 J.S. Jørgensen et al.

Figure 6. Phase diagrams for ATV and truncated-uniform. Top left: reconstruction, bottom left:
uniqueness test. Right: average relative sufficient sampling point along with a 99% confidence interval
at each κ-value. Very small differences (one view more needed for recovering truncated-uniform
images) between classes is seen.

from the right-most plot of the average relative sampling for recovery for the truncated-
uniform image class compared to the alternating-projection image class. The two curves
are nearly identical at low and high relative sparsity values. However, in the mid-range there
is a small difference corresponding to around one more projection view needed on average
for the truncated-uniform images to be recovered.

Both alternating-projection and truncated-uniform image classes are constructed to
yield images of a desired target sparsity, but in fundamentally different ways. The fact that
the arising phase diagrams are so similar leaves us with the interpretation that the phase
diagram, and in particular the phase transition curve is governed mainly by the sparsity,
while the particular image class has less influence.

6.3. Phase diagrams for ITV

We repeat the reconstruction and uniqueness test study for ITV with the alternating-
projection image class designed for ITV. Recall that in contrast to the L1 and ATV cases,
Theorem 3.4 only provides a sufficient condition of solution uniqueness. This means that,
in principle, instances that are not shown to be unique solutions still might be.

For ITV, the relative sparsity with respect to image size is between 0 and 1. As for
L1 we construct the phase diagram for the values κ = 0.025, 0.05, 0.1, 0.2, . . . , 0.9 and
Nv = 1, . . . , 32, see Figure 7. Due to the numerically more challenging conic programs of
isotropic TV solution accuracy was smaller than for L1 and ATV and as a result we choose
a the numerical threshold to ε = 10−3.

Once again we observe a partition into ‘full-recovery’and ‘no-recovery’ regimes clearly
separated by a sharp transition. Also, the reconstruction and uniqueness test phase diagram
agree almost exactly and we ascribe again the minor differences to the uniform a priori choice
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Figure 7. Phase diagrams for ITV. Left: Reconstruction, right: uniqueness test.

of the numerical threshold ε for assessing recovery. The almost exact agreement between the
phase diagrams is interesting considering the uniqueness test is only a sufficient condition.
One may conjecture that the conditions of Theorem 3.4 are also necessary in case where
DT is the discrete gradient and that a proof is only to be found.

Even though both ATV and ITV rely on gradient sparsity, comparing their phase
diagrams do not reveal a straightforward conclusion as to which method provides the greatest
undersampling potential because of the different sparsity measures. More comparisons of
the two methods, for example a ‘cross-over study’of ITV reconstruction applied to the ATV
image class and vice versa is beyond the scope of the present work, where the goal was to
simply document phase transition behaviour for CT measurements.

6.4. Computational time for reconstruction vs. uniqueness testing

The conclusion of the image being the unique solution is in some sense stronger than simply
observing recovery through solving the reconstruction problem. One may therefore wonder
whether the uniqueness test is substantially more expensive. We wish to demonstrate that
this is not the case and for this purpose we choose a representative subset of experiments
and compare the computational times of reconstruction and uniqueness testing. All timing
experiments were run in MATLAB 7.13 (R2011b) under Linux using MOSEK 6.0 on a
Lenovo ThinkPad T430s with Intel Core i5-3320M processor (3 MB cache, up to 3.30 GHz)
and 8 GB RAM, restricted to a single core.

We choose experiments with low, medium and high relative sparsity and low, medium
and high relative sampling cases to measure computational times for. For the signed-spikes
class, we consider 10 instances at each of the relative sparsity levels κ = 0.1, 0.3, 0.5, 0.7,

0.9. For image size Nside = 32, we use 3, 7 and 11 views, for Nside = 64, we use 5, 13
and 21 views and for Nside = 128 we take Nv = 9, 25 and 41. For ATV reconstruction, we
consider the alternating-projection image class, for the same Nside = 32, 64, 128, relative
sparsity κ = 0.1, 0.7, 1.3, 1.9 and the same number of views.

Results are shown in Figure 8. For reconstruction, computational time generally
shows little dependence with κ , if any, increasing κ generally gives slightly increasing
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Figure 8. Average reconstruction and uniqueness testing computational times with error bars of
plus/minus one standard deviation over 10 repetitions at each relative sparsity and relative sampling
value. Left: L1 for signed-spikes image class. Right: ATV for alternating-projection image class.
Top: Size 32, middle: size 64, bottom: size 128. Legend R: reconstruction (full lines), UT: uniqueness
test (dashed lines).

computational time. Uniqueness testing computational time tends to decrease with increas-
ing κ . In several cases, the uniqueness test is significantly faster than the reconstruction. In
some of these cases, the relative sampling is low and the relative sparsity is high, which
causes AI (in the L1 case) to be non-injective, and the infinity-norm minimization problem
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needs not be solved. In other cases, for example, the L1 Nside = 128 case with Nv = 25,
uniqueness testing is much faster across the relative sparsity range. For uniqueness testing,
computational time increases with the sampling level. For reconstruction, the low sampling
cases are also the fastest, however, the medium sampling case is not faster than the high
sampling case in all cases, for example, in the L1 Nside = 128 case the times are comparable,
and in the ATV Nside = 32 case, the high sampling case is in fact faster.

We conclude that in general uniqueness testing is not slower than doing reconstruction,
in most cases the computational times are comparable and in some cases, uniqueness testing
is in fact faster. We note that uniqueness testing can be conveniently used in case of larger
κ , where reconstruction tends to be the slower option.

It is clear that the reported computational times rely on our use of MOSEK for solving
the optimization problems of reconstruction and uniqueness testing. The use of an interior-
point method is what causes the computational time to increase so dramatically from the
order of 100 seconds at Nside = 32 to 101 seconds at Nside = 64 and 103 seconds at
Nside = 128. With another optimization algorithm shorter running times may be observed
with a different result of the comparison. However, our intention with the present study is
not an exhaustive algorithm comparison, but merely to demonstrate that uniqueness testing
can be accomplished in the same time, or faster, than reconstruction.

7. Conclusion

The present work was motivated by understanding quantitatively how much undersam-
pling is admitted for sparsity-exploiting reconstruction methods for CT given the lack
of theoretical guarantees from compressed sensing. Our results demonstrate empirically
that sharp average-case phase transitions from no recovery to full recovery as seen in
compressed sensing also occur for CT measurements across a range of image classes and
sparse reconstruction methods. The location of the phase transition, i.e. the level of sampling
sufficient for recovery depends on the reconstruction method and is to a large degree is
governed by the image sparsity, quite independent of the particular image class.

Due to the inherently empirical nature of our study design it is clear that our results do
not imply any theoretical guarantee. Further, being average-case results leaves the chance
for single instance to require more or fewer samples for recovery than predicted by the
average case. Nevertheless, we think the results may be used or extended to serve as guide
lines for how to many CT samples to acquire based on prior knowledge about the image
class and sparsity. Natural future work would be extensions toward more realistic scenarios
including noisy data, model inconsistencies, specialized image classes, etc.

Constructing phase diagrams by reconstruction cannot establish solution uniqueness,
which makes the uniqueness test more desirable from a theoretical perspective. However,
we observed almost exact agreement between reconstruction and uniqueness test phase
diagrams, so in practice the advantage may be negligible. Also, the reconstruction approach
has the advantage that it can be run directly on any reconstruction problem with no need to
derive specific uniqueness conditions and as such is more easily generalizable.

In our view, the presented empirical evidence suggests that an underlying theoretical
explanation of phase transition behaviour in CT may exist. Establishing such theory would
have large implications for the understanding of sparse reconstruction in CT and we hope
that the present results can serve as a step towards this goal.
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Note

1. Consider A : R
2 → R, (x1, x2) �→ x1, and DT : R

2 → R
2×2, x �→ (x; 0). Then for any

b 
= 0, the vector x∗ = (b, 0) is the unique minimum-ITV solution but A is not injective on R
2.
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