20 research outputs found

    Data-Driven, Multi-Model Workflow Suggests Strong Influence from Hurricanes on the Generation of Turbidity Currents in the Gulf of Mexico

    Get PDF
    Turbidity currents deliver sediment rapidly from the continental shelf to the slope and beyond; and can be triggered by processes such as shelf resuspension during oceanic storms; mass failure of slope deposits due to sediment- and wave-pressure loadings; and localized events that grow into sustained currents via self-amplifying ignition. Because these operate over multiple spatial and temporal scales, ranging from the eddy-scale to continental-scale; coupled numerical models that represent the full transport pathway have proved elusive though individual models have been developed to describe each of these processes. Toward a more holistic tool, a numerical workflow was developed to address pathways for sediment routing from terrestrial and coastal sources, across the continental shelf and ultimately down continental slope canyons of the northern Gulf of Mexico, where offshore infrastructure is susceptible to damage by turbidity currents. Workflow components included: (1) a calibrated simulator for fluvial discharge (Water Balance Model - Sediment; WBMsed); (2) domain grids for seabed sediment textures (dbSEABED); bathymetry, and channelization; (3) a simulator for ocean dynamics and resuspension (the Regional Ocean Modeling System; ROMS); (4) A simulator (HurriSlip) of seafloor failure and flow ignition; and (5) A Reynolds-averaged Navier–Stokes (RANS) turbidity current model (TURBINS). Model simulations explored physical oceanic conditions that might generate turbidity currents, and allowed the workflow to be tested for a year that included two hurricanes. Results showed that extreme storms were especially effective at delivering sediment from coastal source areas to the deep sea, at timescales that ranged from individual wave events (~hours), to the settling lag of fine sediment (~days)

    Editorial: Anticipating and adapting to the impacts of climate change on low elevation coastal zone (LECZ) communities

    Get PDF
    [Scholarcy Abstract] The rates of sea level rise in coastal Virginia and the Chesapeake Bay significantly exceed the global rate and weakening of the Atlantic Meridional Overturning Circulation adds to the annual rates. The original vision was to enhance future resilience of Low-Elevation Coastal Zone communities by advancing understandings and approaches to better anticipate and mitigate hazards to human health, safety and welfare and reduce deleterious impacts to coastal residents and industries. The goal of the thematic Research Topic has been to assemble interdisciplinary papers that contribute to better understanding of the couplings among physical, ecological, socioeconomic, management and policy factors involved for different regions and under contrasting environmental conditions. The finding that nearly ten percent of the US population is at risk from coastal flooding by severe storms and sea level rise highlights the need for improved adaptation measures. The rates of sea level rise in coastal Virginia and the Chesapeake Bay significantly exceed the global rate and weakening of the Atlantic Meridional Overturning Circulation adds to the annual rates. Many Australian estuaries have been degraded by human activity and are threatened by climate change. Ten Caribbean small-island developing states were studied with respect to sustainability of their water-energy-food nexus with climate change

    The Great Acceleration is real and provides a quantitative basis for the proposed Anthropocene Series/Epoch

    Get PDF
    The Anthropocene was conceptualized in 2000 to reflect the extensive impact of human activities on our planet, and subsequent detailed analyses have revealed a substantial Earth System response to these impacts beginning in the mid-20th century. Key to this understanding was the discovery of a sharp upturn in a multitude of global socio-economic indicators and Earth System trends at that time; a phenomenon termed the ‘Great Acceleration’. It coincides with massive increases in global human-consumed energy and shows the Earth System now on a trajectory far exceeding the earlier variability of the Holocene Epoch, and in some respects the entire Quaternary Period. The evaluation of geological signals similarly shows the mid-20th century as representing the most appropriate inception for the Anthropocene. A recent mathematical analysis has nonetheless challenged the significance of the original Great Acceleration data. We examine this analytical approach and reiterate the robustness of the original data in supporting the Great Acceleration, while emphasizing that intervals of rapid growth are inevitably time-limited, as recognised at the outset. Moreover, the exceptional magnitude of this growth remains undeniable, reaffirming the centrality of the Great Acceleration in justifying a formal chronostratigraphic Anthropocene at the rank of series/epoch

    The Anthropocene is a prospective epoch/series, not a geological event

    Get PDF
    The Anthropocene defined as an epoch/series within the Geological Time Scale, and with an isochronous inception in the mid-20th century, would both utilize the rich array of stratigraphic signals associated with the Great Acceleration and align with Earth System science analysis from where the term Anthropocene originated. It would be stratigraphically robust and reflect the reality that our planet has far exceeded the range of natural variability for the Holocene Epoch/Series which it would terminate. An alternative, recently advanced, time-transgressive ‘geological event’ definition would decouple the Anthropocene from its stratigraphic characterisation and association with a major planetary perturbation. We find this proposed anthropogenic ‘event’ to be primarily an interdisciplinary concept in which historical, cultural and social processes and their global environmental impacts are all flexibly interpreted within a multi-scalar framework. It is very different from a stratigraphic-methods-based Anthropocene epoch/series designation, but as an anthropogenic phenomenon, if separately defined and differently named, might be usefully complementary to it

    A ~240 ka record of Ice Sheet and Ocean interactions on the Snorri Drift, SW of Iceland

    No full text
    Core MD99-2323 was extracted from the Snorri Drift at a water depth of 1062 m, just south of the Denmark Strait, and ~120 km from the Last Glacial Maximum (LGM) margins of the Iceland and East Greenland Ice Sheets. The core chronology (~7.5 to 240 cal ka) is derived from radiocarbon dates, marker tephra, paleomagnetic excursion, and correlation with North Atlantic δ18O records on Neogloboquadrina pachyderma (δ18ONp). Sedimentation averaged ~7.5 cm/kyr. Records of proxy flow speed, ice rafted debris (IRD) and oxygen isotopes show that many IRD abundance peaks represent winnowing of the fine fraction by faster flows rather than pulses of increased IRD flux. The overall pattern of flow speed does not resemble the classic fast interglacial/slow glacial pattern seen in records of Nordic Sea overflow, rather the current record is suggested to be partly controlled by the production of brine-driven gravity flows from adjacent ice fronts, especially during cold periods. On a smaller scale the usual glacial/slow – interglacial/fast pattern appears to be the case during ~5 kyr oscillations during Marine Isotope Stage (MIS) 6 where periodic low flow speed is matched by high values of planktonic oxygen isotope ratios. Eight peaks in quartz wt% reflect increased contributions from glacial erosion of Precambrian and Caledonian bedrock from E and NE Greenland; peaks in dolomite may reflect glacial-marine transport from the Laurentide Ice Sheet. Cross wavelet analysis of the δ18ONp versus sortable silt and quartz records indicate significant precession and obliquity periodicities, but with little temporal correlations due to leads and lags in responses

    A ~240 ka record of Ice Sheet and Ocean interactions on the Snorri Drift, SW of Iceland

    No full text
    Core MD99-2323 was extracted from the Snorri Drift at a water depth of 1062 m, just south of the Denmark Strait, and ~120 km from the Last Glacial Maximum (LGM) margins of the Iceland and East Greenland Ice Sheets. The core chronology (~7.5 to 240 cal ka) is derived from radiocarbon dates, marker tephra, paleomagnetic excursion, and correlation with North Atlantic δ18O records on Neogloboquadrina pachyderma (δ18ONp). Sedimentation averaged ~7.5 cm/kyr. Records of proxy flow speed, ice rafted debris (IRD) and oxygen isotopes show that many IRD abundance peaks represent winnowing of the fine fraction by faster flows rather than pulses of increased IRD flux. The overall pattern of flow speed does not resemble the classic fast interglacial/slow glacial pattern seen in records of Nordic Sea overflow, rather the current record is suggested to be partly controlled by the production of brine-driven gravity flows from adjacent ice fronts, especially during cold periods. On a smaller scale the usual glacial/slow – interglacial/fast pattern appears to be the case during ~5 kyr oscillations during Marine Isotope Stage (MIS) 6 where periodic low flow speed is matched by high values of planktonic oxygen isotope ratios. Eight peaks in quartz wt% reflect increased contributions from glacial erosion of Precambrian and Caledonian bedrock from E and NE Greenland; peaks in dolomite may reflect glacial-marine transport from the Laurentide Ice Sheet. Cross wavelet analysis of the δ18ONp versus sortable silt and quartz records indicate significant precession and obliquity periodicities, but with little temporal correlations due to leads and lags in responses

    Large deltas, small deltas: Toward a more rigorous understanding of coastal marine deltas

    No full text
    International audienceDeltas are subaerial landforms that cap underlying deposits with subaqueous extensions that result from a river feeding sediment directly into a standing body of water at a rate that overwhelms any effective dispersal processes derived from the ambient basin. This definition encapsulates both the terrestrial surface expression and the geological focus on the entire sediment mass. Environmental studies also focus on the ecology of deltaic wetlands, their drowning history, and related sustainability issues including societal considerations, history, and culture. A mean 76 ± 16% drop in hydraulic energy occurs in all subaerial deltas regardless of size, given the break in gradients separating fluvial and deltaic surfaces, driving an ever-decreasing bed-material transport, shallowing of distributary channels and concomitant overbank flooding. A delta's sediment mass grows from the addition of new river loads but can also include aeolian and marine sediment derived from outside the delta domain, growth of peat and other biomass, and inputs from human action. Removal of sediment is via river plumes interacting with marine currents, wave-induced transport, sediment failures and gravity flows, high-tide inundation onto the delta plain, tidal channel widening and deepening, and human action (peat, clay, sand and gravel mining). A delta's trapping efficiency ranges from 0 for small-load rivers that discharge directly into an energetic ocean, to 80% for large deltas, and up to 100% for some semi-enclosed bayhead deltas, including fjords. The global (ensemble) subaerial delta aggradation rate is ∼1.6 mm/y if 70% of the global sediment load exits the river mouth(s), a reminder of how much sediment can be expected to be delivered to the surfaces of global deltas at a time when the 2022 CE sea level rise is ∼4 mm/y. At the planetary scale, deltas are environmentally complex given Earth's range in climate, hydrodynamics, tectonic settings, relative sea-level provinces, sediment input, redistribution processes, and human actions. Under natural conditions, the subaerial portion of deltas adapt to change by advancing, retreating, switching, aggrading, and/or drowning, whereas many modern deltas are structurally constrained by societal needs. The 89 large and mud-rich coastal marine deltas (i.e. subaerial area > 1000 km2) account for 84.3% of Earth's total deltaic area that hosts >89% of all humans occupying deltas, many living within megacities. The 885 medium-size deltas (i.e. subaerial areas 10-1000 km2) account for 15.5% of the global delta area and 10.5% of humans living on deltas, with characteristics that fall between the small and large delta categories. The 1460 small and essentially sandy deltas (1-10 km2), including all fjord deltas, are impacted less from human action (with exceptions) and most are better able to withstand climate change. Recognizing the limits of big data in capturing delta complexity, field data remains a necessary gold standard for site investigators

    Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch

    Get PDF
    Growth in fundamental drivers—energy use, economic productivity and population—can provide quantitative indications of the proposed boundary between the Holocene Epoch and the Anthropocene. Human energy expenditure in the Anthropocene, ~22 zetajoules (ZJ), exceeds that across the prior 11,700 years of the Holocene (~14.6 ZJ), largely through combustion of fossil fuels. The global warming effect during the Anthropocene is more than an order of magnitude greater still. Global human population, their productivity and energy consumption, and most changes impacting the global environment, are highly correlated. This extraordinary outburst of consumption and productivity demonstrates how the Earth System has departed from its Holocene state since ~1950 CE, forcing abrupt physical, chemical and biological changes to the Earth’s stratigraphic record that can be used to justify the proposal for naming a new epoch—the Anthropocene

    Adaptation for changing deltas

    No full text
    Deltas have provided fertile farmland, productive fishing, and access to trade routes for millennia. Today, more than five hundred million people live on deltas and coastal urban areas. Yet deltas are also incredibly vulnerable to the pressures of climate change
    corecore