81 research outputs found

    Kaposi's sarcoma

    Get PDF

    Monitoring change in cycling with the Danish bike- traffic index.

    Get PDF
    The Danish Road Directorate has long experience in planning for cycling and the use of bicycle data and indexes. A national cycling index, a bike-traffic-index, was established in 1985, based on bike-flows continuously counted in locations all over the country. The number of counting stations included in the index has been increased over time to improve reliability and allow support for the development and assessment of policies aiming to maintain and further increase cycling. The index is partly fed by the Road Directorate and partly by the municipalities. With its current 61 counting stations in operation, the bike- traffic-index is still ‘thin’ compared to the equivalent car-traffic index, but it does provide consistent evidence on changes in cycling on Danish roads. The paper compares the bike-traffic-index with travel- survey data as indicators of changes in cycling, it presents the methodology and accuracy of the bike-traffic- index, and finally, it discusses its desirable improvements to increase accuracy and detect changes in cycling beyond the fluctuations in weather conditions that are generally important to cycling but also beyond policy reach

    Structural characterization of EnpA D,L-Endopeptidase from Enterococcus faecalis prophage provides insights into substrate specificity of M23 peptidases

    Get PDF
    The best-characterized members of the M23 family are glycyl-glycine hydrolases, such as lysostaphin (Lss) from Staphylococcus simulans or LytM from Staphylococcus aureus. Recently, enzymes with broad specificities were reported, such as EnpACD from Enterococcus faecalis, that cleaves D,L peptide bond between the stem peptide and a cross-bridge. Previously, the activity of EnpACD was demonstrated only on isolated peptidoglycan fragments. Herein we report conditions in which EnpACD lyses bacterial cells live with very high efficiency demonstrating great bacteriolytic potential, though limited to a low ionic strength environment. We have solved the structure of the EnpACD H109A inactive variant and analyzed it in the context of related peptidoglycan hydrolases structures to reveal the bases for the specificity determination. All M23 structures share a very conserved ÎČ-sheet core which constitutes the rigid bottom of the substrate-binding groove and active site, while variable loops create the walls of the deep and narrow binding cleft. A detailed analysis of the binding groove architecture, specificity of M23 enzymes and D,L peptidases demonstrates that the substrate groove, which is particularly deep and narrow, is accessible preferably for peptides composed of amino acids with short side chains or subsequent L and D-isomers. As a result, the bottom of the groove is involved in interactions with the main chain of the substrate while the side chains are protruding in one plane towards the groove opening. We concluded that the selectivity of the substrates is based on their conformations allowed only for polyglycine chains and alternating chirality of the amino acids

    Acquired demyelination but not genetic developmental defects in myelination leads to brain tissue stiffness changes

    Get PDF
    Changes in axonal myelination are an important hallmark of aging and a number of neurological diseases. Demyelinated axons are impaired in their function and degenerate over time. Oligodendrocytes, the cells responsible for myelination of axons, are sensitive to mechanical properties of their environment. Growing evidence indicates that mechanical properties of demyelinating lesions are different from the healthy state and thus have the potential to affect myelinating potential of oligodendrocytes. We performed a high-resolution spatial mapping of the mechanical heterogeneity of demyelinating lesions using atomic force microscope-enabled indentation. Our results indicate that the stiffness of specific regions of mouse brain tissue is influenced by age and degree of myelination. Here we specifically demonstrate that acquired acute but not genetic demyelination leads to decreased tissue stiffness, which could influence the remyelination potential of oligodendrocytes. We also demonstrate that specific brain regions have unique ranges of stiffness in white and grey matter. Our ex vivo findings may help the design of future in vitro models to mimic the mechanical environment of the brain in healthy and diseased states. The mechanical properties of demyelinating lesions reported here may facilitate novel approaches in treating demyelinating diseases such as multiple sclerosis

    Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b

    Get PDF
    Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme

    Bringing onco‐innovation to Europe’s healthcare systems. The potential of biomarker testing, real world evidence, tumour agnostic therapies to empower personalised medicine

    Get PDF
    Rapid and continuing advances in biomarker testing are not being matched by uptake in health systems, and this is hampering both patient care and innovation. It also risks costing health systems the opportunity to make their services more efficient and, over time, more economical. The potential that genomics has brought to biomarker testing in diagnosis, prediction and research is being realised, pre‐eminently in many cancers, but also in an ever‐wider range of conditions— notably BRCA1/2 testing in ovarian, breast, pancreatic and prostate cancers. Nevertheless, the implementation of genetic testing in clinical routine setting is still challenging. Development is impeded by country‐related heterogeneity, data deficiencies, and lack of policy alignment on standards, approval—and the role of real‐world evidence in the process—and reimbursement. The acute nature of the problem is compellingly illustrated by the particular challenges facing the development and use of tumour agnostic therapies, where the gaps in preparedness for taking advantage of this innovative approach to cancer therapy are sharply exposed. Europe should already have in place a guarantee of universal access to a minimum suite of biomarker tests and should be planning for an optimum testing scenario with a wider range of biomarker tests integrated into a more sophisticated health system articulated around personalised medicine. Improving healthcare and winning advantages for Europe’s industrial competitiveness and innovation require an appropriate policy framework—starting with an update to outdated recommendations. We show herein the main issues and proposals that emerged during the previous advisory boards organised by the European Alliance for Personalized Medicine which mainly focus on possible scenarios of harmonisation of both oncogenetic testing and management of cancer patients

    Bringing onco-innovation to Europe’s healthcare systems: the potential of biomarker testing, real world evidence, tumour agnostic therapies to empower personalised medicine

    Get PDF
    International audienceRapid and continuing advances in biomarker testing are not being matched by uptake in health systems, and this is hampering both patient care and innovation. It also risks costing health systems the opportunity to make their services more efficient and, over time, more economical. The potential that genomics has brought to biomarker testing in diagnosis, prediction and research is being realised, pre-eminently in many cancers, but also in an ever-wider range of conditions—notably BRCA1/2 testing in ovarian, breast, pancreatic and prostate cancers. Nevertheless, the implementation of genetic testing in clinical routine setting is still challenging. Development is impeded by country-related heterogeneity, data deficiencies, and lack of policy alignment on standards, approval—and the role of real-world evidence in the process—and reimbursement. The acute nature of the problem is compellingly illustrated by the particular challenges facing the development and use of tumour agnostic therapies, where the gaps in preparedness for taking advantage of this innovative approach to cancer therapy are sharply exposed. Europe should already have in place a guarantee of universal access to a minimum suite of biomarker tests and should be planning for an optimum testing scenario with a wider range of biomarker tests integrated into a more sophisticated health system articulated around personalised medicine. Improving healthcare and winning advantages for Europe’s industrial competitiveness and innovation require an appropriate policy framework—starting with an update to outdated recommendations. We show herein the main issues and proposals that emerged during the previous advisory boards organised by the European Alliance for Personalized Medicine which mainly focus on possible scenarios of harmonisation of both oncogenetic testing and management of cancer patients

    Laryngeal embryonal rhabdomyosarcoma in an adult - A case presentation in the eyes of geneticists and clinicians

    Get PDF
    <p>1. Abstract</p> <p>Background</p> <p>Rhabdomyosarcoma is a solid tumor, resulting from dysregulation of the skeletal myogenesis program. For rhabdomyosarcomas (RMS) with a predilection for the head and neck, genitourinary tract, extremities, trunk, retroperitoneum, the larynx is still an unusual site. Till now only several cases of this laryngeal tumor have been described in world literature in the adult population. The entire spectrum of genetic factors underlying RMS development and progression is unclear until today. Multiple signaling pathways seem to be involved in ERMS development and progression.</p> <p>Case presentation</p> <p>In this paper we report an interesting RMS case in which the disease was located within the glottic region. We report an embryonal rhabdomyosarcoma of the larynx in 33 year-old man. After unsuccessful chemotherapy hemilaryngectomy was performed. In follow up CT no signs of recurrence were found. Recently patient is recurrence free for 62 months.</p> <p>Conclusions</p> <p>Considering the histological diagnosis and the highly aggressive nature of the lesion for optimal diagnosis positron electron tomography (PET) and computerized tomography (CT) of the neck and thorax should be performed. At this time surgical treatment with adjuvant radiotherapy seems to be the treatment of choice for this disease. Rhabdomyosarcoma of the larynx has a better prognosis than elsewhere in the body, probably because of its earlier recognition and accessibility to radical surgery.</p

    A disease-linked ULBP6 polymorphism inhibits NKG2D-mediated target cell killing by enhancing the stability of NKG2D-ligand binding

    Get PDF
    This is an accepted manuscript of an article published by AAAS in Science Signaling on 30/05/2017, available online: https://stke.sciencemag.org/content/10/481/eaai8904 The accepted version of the publication may differ from the final published version.NKG2D (natural killer group 2, member D) is an activating receptor found on the surface of immune cells, including natural killer (NK) cells, which regulates innate and adaptive immunity through recognition of the stress-induced ligands ULBP1 (UL16 binding protein 1) to ULBP6 and MICA/B. Similar to class I human leukocyte antigen (HLA), these NKG2D ligands have a major histocompatibility complex–like fold and exhibit pronounced polymorphism, which influences human disease susceptibility. However, whereas class I HLA polymorphisms occur predominantly in the α1α2 groove and affect antigen binding, the effects of most NKG2D ligand polymorphisms are unclear. We studied the molecular and functional consequences of the two major alleles of ULBP6, the most polymorphic ULBP gene, which are associated with autoimmunity and relapse after stem cell transplantation. Surface plasmon resonance and crystallography studies revealed that the arginine-to-leucine polymorphism within ULBP0602 affected the NKG2D-ULBP6 interaction by generating an energetic hotspot. This resulted in an NKG2D-ULBP0602 affinity of 15.5 nM, which is 10- to 1000-fold greater than the affinities of other ULBP-NKG2D interactions and limited NKG2D-mediated activation. In addition, soluble ULBP0602 exhibited high-affinity competitive binding for NKG2D and partially suppressed NKG2D-mediated activation of NK cells by other NKG2D ligands. These effects resulted in a decrease in a range of NKG2D-mediated effector functions. Our results reveal that ULBP polymorphisms affect the strength of human lymphocyte responses to cellular stress signals and may offer opportunities for therapeutic intervention.Leukaemia and Lymphoma Researc
    • 

    corecore