9 research outputs found

    Targeting of the MAPK and AKT pathways in conjunctival melanoma shows potential synergy

    Get PDF
    Purpose: Conjunctival melanoma (CM) is a rare but lethal form of cancer. Similar to cutaneous melanoma, CM frequently carries activating mutations in BRAF and NRAS. We studied whether CM as well as conjunctival benign and premalignant melanocytic lesions express targets in the mitogen-activated protein kinase (MAPK) and AKT pathways, and whether specific inhibitors can suppress CM growth in vitro. Methods: 131 conjunctival lesions obtained from 129 patients were collected. The presence of BRAF V600E mutation and expression of phosphorylated (p)-ERK and p-AKT were assessed by immunohistochemistry. We studied cell proliferation, phosphorylation, cell cycling and apoptosis in three CM cell lines using two BRAF inhibitors (Vemurafenib and Dabrafenib), a MEK inhibitor (MEK162) and an AKT inhibitor (MK2206). Results: The BRAF V600E mutation was present in 19% of nevi and 26% of melanomas, but not in primary acquired melanosis (PAM). Nuclear and cytoplasmic p-ERK and p-AKT were expressed in all conjunctival lesions. Both BRAF inhibitors suppressed growth of both BRAF mutant CM cell lines, but only one induced cell death. MEK162 and MK2206 inhibited proliferation of CM cells in a dose-dependent manner, and the combination of these two drugs led to synergistic growth inhibition and cell death in all CM cell lines. Conclusion: ERK and AKT are constitutively activated in conjunctival nevi, PAM and melanoma. While BRAF inhibitors prohibited cell growth, they were not always cytotoxic. Combining MEK and AKT inhibitors led to more growth inhibition and cell death in CM cells. The combination may benefit patients suffering from metastatic conjunctival melanoma

    Soluble HLA in the aqueous humour of uveal melanoma is associated with unfavourable tumour characteristics

    Get PDF
    A high HLA expression in uveal melanoma (UM) is part of the prognostically unfavorable inflammatory phenotype. We wondered whether the presence of soluble HLA (sHLA) in the aqueous humour is associated with clinical, histopathological or genetic tumour characteristics, and represents tumour HLA expression and intratumoural inflammation. Aqueous humour from 108 UM patients was analysed for the presence of sHLA, using a Luminex assay specific for HLA Class I. Clinical and genetic parameters were compared between sHLA-positive and negative eyes. A qPCR analysis was performed on tumour tissue using a Fluidigm assay. In 19/108 UM-containing eyes, the sHLA level in the aqueous was above the detection limit. Tumours in sHLA-positive eyes were significantly larger, more frequently involved the ciliary body, and more often showed monosomy 3, gain of chromosome 8q and loss of BAP1 staining. Melanoma-related survival was worse in patients with sHLA-positive aqueous humour. sHLA in the aqueous did not represent the tumour's HLA expression and did not relate to immune cell infiltration in the tumour. We conclude that UM-containing eyes may contain sHLA in the aqueous humour, where it is a prognostically-unfavourable sign and may influence local immune responses

    Aqueous Humor Biomarkers Identify Three Prognostic Groups in Uveal Melanoma

    Get PDF
    Purpose: To investigate whether we can identify different patterns of inflammation in the aqueous humor of a uveal melanoma (UM)-containing eye, and whether these are related to prognosis. Meth

    Multicenter external validation of the liverpool uveal melanoma prognosticator online: An OOG collaborative study

    Get PDF
    Uveal melanoma (UM) is fatal in ~50% of patients as a result of disseminated disease. This study aims to externally validate the Liverpool Uveal Melanoma Prognosticator Online V3 (LUMPO3) to determine its reliability in predicting survival after treatment for choroidal melanoma when utilizing external data from other ocular oncology centers. Anonymized data of 1836 UM patients from seven international ocular oncology centers were analyzed with LUMPO3 to predict the 10-year survival for each patient in each external dataset. The analysts were masked to the patient outcomes. Model predictions were sent to an independent statistician to evaluate LUMPO3’s performance using discrimination and calibration methods. LUMPO3’s ability to discriminate between UM patients who died of metastatic UM and those who were still alive was fair-to-good, with C-statistics ranging from 0.64 to 0.85 at year 1. The pooled estimate for all external centers was 0.72 (95% confidence interval: 0.68 to 0.75). Agreement between observed and predicted survival probabilities was generally good given differences in case mix and survival rates between different centers. Despite the differences between the international cohorts of patients with primary UM, LUMPO3 is a valuable tool for predicting all-cause mortality in this disease when using data from external centers

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study

    No full text
    BACKGROUND: The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for critically ill COVID-19 patients and discuss its potential utility in the ICU. METHODS: We collected electronic medical record (EMR) data from 3222 ICU admissions with a COVID-19 infection from 25 different ICUs in the Netherlands. We extracted daily observations of each patient and fitted both a linear (logistic regression) and non-linear (random forest) model to predict mortality within 24 h from the moment of prediction. Isotonic regression was used to re-calibrate the predictions of the fitted models. We evaluated the models in a leave-one-ICU-out (LOIO) cross-validation procedure. RESULTS: The logistic regression and random forest model yielded an area under the receiver operating characteristic curve of 0.87 [0.85; 0.88] and 0.86 [0.84; 0.88], respectively. The recalibrated model predictions showed a calibration intercept of -0.04 [-0.12; 0.04] and slope of 0.90 [0.85; 0.95] for logistic regression model and a calibration intercept of -0.19 [-0.27; -0.10] and slope of 0.89 [0.84; 0.94] for the random forest model. DISCUSSION: We presented a model for dynamic mortality prediction, specifically for critically ill COVID-19 patients, which predicts near-term mortality rather than in-ICU mortality. The potential clinical utility of dynamic mortality models such as benchmarking, improving resource allocation and informing family members, as well as the development of models with more causal structure, should be topics for future research

    Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    No full text
    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r2= 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11-1.23, P-trend = 4.5 Ă— 10-9for rs2046210; HR = 1.28, 95% CI: 1.18-1.40, P-trend = 1.3 Ă— 10-8for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01-1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02-1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women

    Common variants of the <i>BRCA1</i> wild-type allele modify the risk of breast cancer in <i>BRCA1</i> mutation carriers

    No full text
    Mutations in the &lt;i&gt;BRCA1&lt;/i&gt; gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The &lt;i&gt;BRCA1&lt;/i&gt; protein plays a central role in DNA repair, a mechanism that is particularly instrumental in safeguarding cells against tumorigenesis. We hypothesized that polymorphisms that alter the expression and/or function of &lt;i&gt;BRCA1&lt;/i&gt; carried on the wild-type (non-mutated) copy of the &lt;i&gt;BRCA1&lt;/i&gt; gene would modify the risk of breast cancer in carriers of &lt;i&gt;BRCA1&lt;/i&gt; mutations. A total of 9874 &lt;i&gt;BRCA1&lt;/i&gt; mutation carriers were available in the Consortium of Investigators of Modifiers of &lt;i&gt;BRCA1/2&lt;/i&gt; (CIMBA) for haplotype analyses of &lt;i&gt;BRCA1&lt;/i&gt;. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of &lt;i&gt;BRCA1&lt;/i&gt; were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence interval 0.77–0.95, &lt;i&gt;P&lt;/i&gt; = 0.003). Promoter &lt;i&gt;in vitro&lt;/i&gt; assays of the major &lt;i&gt;BRCA1&lt;/i&gt; haplotypes showed that common polymorphisms in the regulatory region alter its activity and that this effect may be attributed to the differential binding affinity of nuclear proteins. In conclusion, variants on the wild-type copy of &lt;i&gt;BRCA1&lt;/i&gt; modify risk of breast cancer among carriers of &lt;i&gt;BRCA1&lt;/i&gt; mutations, possibly by altering the efficiency of &lt;i&gt;BRCA1&lt;/i&gt; transcription
    corecore