173 research outputs found

    Another tetraquark structure in the π+χc1\pi^+ \chi_{c1} invariant mass distribution

    Full text link
    In this article, we assume that there exists a scalar hidden charm tetraquark state in the π+χc1\pi^+ \chi_{c1} invariant mass distribution, and study its mass using the QCD sum rules. The numerical result MZ=(4.36±0.18)GeVM_{Z}=(4.36\pm0.18) \rm{GeV} is consistent with the mass of the Z(4250). The Z(4250) may be a tetraquark state, other possibilities, such as a hadro-charmonium resonance and a D1+Dˉ0+D+Dˉ10D_1^+\bar{D}^0+ D^+\bar{D}_1^0 molecular state are not excluded.Comment: 14 pages, 14 figure, correct some type error

    Engineering Pathways in Central Carbon Metabolism Help to Increase Glycan Production and Improve N-Type Glycosylation of Recombinant Proteins in E. coli.

    Get PDF
    Escherichia coli strains have been modified in a variety of ways to enhance the production of different recombinant proteins, targeting membrane protein expression, proteins with disulphide bonds, and more recently, proteins which require N-linked glycosylation. The addition of glycans to proteins remains a relatively inefficient process and here we aimed to combine genetic modifications within central carbon metabolic pathways in order to increase glycan precursor pools, prior to transfer onto polypeptide backbones. Using a lectin screen that detects cell surface representation of glycans, together with Western blot analyses using an O-antigen ligase mutant strain, the enhanced uptake and phosphorylation of sugars (ptsA) from the media combined with conservation of carbon through the glyoxylate shunt (icl) improved glycosylation efficiency of a bacterial protein AcrA by 69% and over 100% in an engineered human protein IFN-α2b. Unexpectedly, overexpression of a gene involved in the production of DXP from pyruvate (dxs), which was previously seen to have a positive impact on glycosylation, was detrimental to process efficiency and the possible reasons for this are discussed

    Gravitational Coupling and Dynamical Reduction of The Cosmological Constant

    Full text link
    We introduce a dynamical model to reduce a large cosmological constant to a sufficiently small value. The basic ingredient in this model is a distinction which has been made between the two unit systems used in cosmology and particle physics. We have used a conformal invariant gravitational model to define a particular conformal frame in terms of large scale properties of the universe. It is then argued that the contributions of mass scales in particle physics to the vacuum energy density should be considered in a different conformal frame. In this manner, a decaying mechanism is presented in which the conformal factor appears as a dynamical field and plays a key role to relax a large effective cosmological constant. Moreover, we argue that this model also provides a possible explanation for the coincidence problem.Comment: To appear in GR

    Inclusive production of ρ0(770),f0(980)\rho^{0}(770), f_0(980) and f2(1270)f_2(1270) mesons in νμ\nu_{\mu} charged current interactions

    Full text link
    The inclusive production of the meson resonances ρ0(770)\rho^{0}(770), f0(980)f_0(980) and f2(1270)f_2(1270) in neutrino-nucleus charged current interactions has been studied with the NOMAD detector exposed to the wide band neutrino beam generated by 450 GeV protons at the CERN SPS. For the first time the f0(980)f_{0}(980) meson is observed in neutrino interactions. The statistical significance of its observation is 6 standard deviations. The presence of f2(1270)f_{2}(1270) in neutrino interactions is reliably established. The average multiplicity of these three resonances is measured as a function of several kinematic variables. The experimental results are compared to the multiplicities obtained from a simulation based on the Lund model. In addition, the average multiplicity of ρ0(770)\rho^{0}(770) in antineutrino - nucleus interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.

    Nepafenac 0.3% after Cataract Surgery in Patients with Diabetic Retinopathy : Results of 2 Randomized Phase 3 Studies

    Get PDF
    PURPOSE: To demonstrate the efficacy and safety of once-daily nepafenac 0.3% ophthalmic suspension versus vehicle, based on clinical outcomes, after cataract surgery in patients with diabetes. DESIGN: Two prospective, randomized, multicenter, double-masked, vehicle-controlled phase 3 studies. PARTICIPANTS: Total, 615 patients in study 1 and 605 patients in study 2. METHODS: Patients were randomized (1:1) to topical nepafenac 0.3% or vehicle once-daily starting the day before surgery and continuing for 90 days thereafter. MAIN OUTCOME MEASURES: Key efficacy variables were: patients (%) in whom macular edema (ME) developed ( 6530% increase from preoperative baseline central subfield macular thickness) within 90 days after cataract surgery and the patients (%) with a best-corrected visual acuity (BCVA) improvement of 6515 letters from preoperative baseline through day 14 maintained through day 90. Secondary end points included: patients (%) with a BCVA improvement of 6515 letters from preoperative baseline through days 90 and 60 and safety over 3 months. RESULTS: A significantly lower percentage of patients demonstrated ME within 90 days after surgery with nepafenac 0.3% versus vehicle (study 1: 2.3% vs. 17.3%; P < 0.001; study 2: 5.9% vs. 14.3%; P = 0.001; pooled: 4.1% vs. 15.9%; P < 0.001). The percentage of patients achieving a 6515-letter improvement from baseline through day 14 maintained through day 90 with nepafenac 0.3% versus vehicle was 61.7% versus 43.0% (P < 0.001) in study 1, 48.8% versus 50.5% (P = 0.671) in study 2, and 55.4% versus 46.7% (P = 0.003) in the pooled analysis. A greater percentage of patients treated with nepafenac 0.3% versus vehicle in study 1 and similar percentage in study 2 had a BCVA improvement of 6515 letters from preoperative baseline through day 90 (77.2% vs. 67.7% [P = 0.009] and 65.4% vs. 65.9% [P = 0.888]) and through day 60 (76.2% vs. 64.7% [P = 0.002] and 68.9% vs. 62.1% [P = 0.092]). No unanticipated adverse events were observed. CONCLUSIONS: These studies demonstrated the clinical benefits of nepafenac 0.3% over vehicle in reducing the risk of postoperative ME, with the integrated analysis showing improved BCVA after cataract surgery in patients with diabetic retinopathy, with no unanticipated safety events

    Update of the Search for the Neutrinoless Decay τμγ\tau\to \mu\gamma

    Full text link
    We present an update of the search for the lepton family number violating decay τμγ\tau \to \mu\gamma using a complete CLEO II data sample of 12.6 million τ+τ\tau^+\tau^- pairs. No evidence of a signal has been found and the corresponding upper limit is \BR(\tau \to \mu\gamma) < 1.0 \times 10^{-6} at 90% CL, significantly smaller than previous limits. All quoted results are preliminary.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Measurement of the Mass Splittings between the bbˉχb,J(1P)b\bar{b}\chi_{b,J}(1P) States

    Full text link
    We present new measurements of photon energies and branching fractions for the radiative transitions: Upsilon(2S)->gamma+chi_b(J=0,1,2). The masses of the chi_b states are determined from the measured radiative photon energies. The ratio of mass splittings between the chi_b substates, r==(M[J=2]-M[J=1])/(M[J=1]-M[J=0]) with M the chi_b mass, provides information on the nature of the bbbar confining potential. We find r(1P)=0.54+/-0.02+/-0.02. This value is in conflict with the previous world average, but more consistent with the theoretical expectation that r(1P)<r(2P); i.e., that this mass splittings ratio is smaller for the chi_b(1P) triplet than for the chi_b(2P) triplet.Comment: 11 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Phenomenology of Pc(4380)+, Pc(4450)+ and related states

    Get PDF
    The Pc(4380)+P_c(4380)^+ and Pc(4450)+P_c(4450)^+ states recently discovered at LHCb have masses close to several relevant thresholds, which suggests they can be described in terms of meson-baryon degrees of freedom. This article explores the phenomenology of these states, and their possible partners, from this point of view. Competing models can be distinguished by the masses of the neutral partners which have yet to be observed, and the existence or otherwise of further partners with different isospin, spin, and parity. Future experimental studies in different decay channels can also discriminate among models, using selection rules and algebraic relations among decays. Among the several possible meson-baryon pairs which could be important, one implies that the states are mixtures of isospins 1/2 and 3/2, with characteristic signatures in production and decay. A previous experimental study of a Cabibbo-suppressed decay showed no evidence for the states, and further analysis is required to establish the significance of this non-observation. Several intriguing similarities suggest that Pc(4450)+P_c(4450)^+ is related to the X(3872)X(3872) meson.Comment: 16 pages, 1 figure. Journal version (some very minor changes from arXiv v1
    corecore