146 research outputs found

    On Molecular Hydrogen Formation and the Magnetohydrostatic Equilibrium of Sunspots

    Full text link
    We have investigated the problem of sunspot magnetohydrostatic equilibrium with comprehensive IR sunspot magnetic field survey observations of the highly sensitive Fe I lines at 15650 \AA\ and nearby OH lines. We have found that some sunspots show isothermal increases in umbral magnetic field strength which cannot be explained by the simplified sunspot model with a single-component ideal gas atmosphere assumed in previous investigations. Large sunspots universally display non-linear increases in magnetic pressure over temperature, while small sunspots and pores display linear behavior. The formation of molecules provides a mechanism for isothermal concentration of the umbral magnetic field, and we propose that this may explain the observed rapid increase in umbral magnetic field strength relative to temperature. Existing multi-component sunspot atmospheric models predict that a significant amount of molecular hydrogen (H2) exists in the sunspot umbra. The formation of H2 can significantly alter the thermodynamic properties of the sunspot atmosphere and may play a significant role in sunspot evolution. In addition to the survey observations, we have performed detailed chemical equilibrium calculations with full consideration of radiative transfer effects to establish OH as a proxy for H2, and demonstrate that a significant population of H2 exists in the coolest regions of large sunspots.Comment: 17 pages, 19 figures, accepted for publication in Ap

    Effect of soil moisture regimes on growth and seed production of two Australian biotypes of Sisymbrium thellungii O.E. Schulz

    Get PDF
    Sisymbrium thellungii O.E. Schulz is an emerging problematic weed in the northern grain region of Australia. Several different biotypes exist in this region but not all biotypes exhibit the same growth and reproduction behavior. This might be due to local adaptation to the different agro-ecosystems, however, information on this aspect is limited. To determine whether adaptation to water stress was a factor in biotype demographic growth and reproduction behavior, we evaluated the physiological and biochemical responses of two Australian S. thellungii biotypes, selected from high (Dalby) and medium (St. George) rainfall areas, to different pot soil moisture levels corresponding to 100, 75, 50, and 25% of soil water holding capacity (WHC). Averaged across moisture levels, the St. George biotype (medium rainfall area) had 89% greater biomass and produced 321% more seeds than the Dalby biotype. The St. George biotype was less affected by increased levels of water stress than the Dalby biotype. The Dalby biotype produced 4,787 seeds plant-1 at 100% WHC and only 28 seeds plant-1 at 25% WHC. On the other hand, the St. George biotype produced 4,061 seeds plant-1 at 25% WHC and its seed production at 100% WHC was 9,834 seeds plant-1. On a per leaf area basis and averaged across all moisture levels, the St. George had significantly lower net carbon assimilation compared with the Dalby biotype, accompanied by a trend for lower stomatal conductance, which might indicate an adaptation to water stress. Across the moisture levels, the St. George biotype had higher phenolics and total soluble sugar, but free proline content was higher in the Dalby biotype compared with the St. George biotype. Like total soluble sugar, proline content increased with water stress in both biotypes, but it increased to a greater extent in the Dalby biotype, particularly at the 25% of WHC. Branching, flowering and maturity occurred earlier in the St. George biotype compared with the Dalby biotype, indicating relatively faster growth of the St. George biotype, which again seems to be an adaptation to water-limited environments. In conclusion, the St. George biotype of S. thellungii had higher reproductive capacity than the Dalby biotype across all the moisture regimes, which suggests greater invasiveness. Overall, the large size and rapid growth of the S. thellungii population from the medium rainfall area, together with its physiological response to water stress and its ability to maintain seed production in dry conditions, may enable this biotype to become widespread in Australia. © 2018 Mahajan, George-Jaeggli, Walsh and Chauhan

    An Interface Region Imaging Spectrograph first view on Solar Spicules

    Full text link
    Solar spicules have eluded modelers and observers for decades. Since the discovery of the more energetic type II, spicules have become a heated topic but their contribution to the energy balance of the low solar atmosphere remains unknown. Here we give a first glimpse of what quiet Sun spicules look like when observed with NASA's recently launched Interface Region Imaging Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the chromosphere and transition region we compare the properties and evolution of spicules as observed in a coordinated campaign with Hinode and the Atmospheric Imaging Assembly. Our IRIS observations allow us to follow the thermal evolution of type II spicules and finally confirm that the fading of Ca II H spicules appears to be caused by rapid heating to higher temperatures. The IRIS spicules do not fade but continue evolving, reaching higher and falling back down after 500-800 s. Ca II H type II spicules are thus the initial stages of violent and hotter events that mostly remain invisible in Ca II H filtergrams. These events have very different properties from type I spicules, which show lower velocities and no fading from chromospheric passbands. The IRIS spectra of spicules show the same signature as their proposed disk counterparts, reinforcing earlier work. Spectroheliograms from spectral rasters also confirm that quiet Sun spicules originate in bushes from the magnetic network. Our results suggest that type II spicules are indeed the site of vigorous heating (to at least transition region temperatures) along extensive parts of the upward moving spicular plasma.Comment: 6 pages, 4 figures, accepted for publication in ApJ Letters. For associated movies, see http://folk.uio.no/tiago/iris_spic

    Detection of supersonic downflows and associated heating events in the transition region above sunspots

    Get PDF
    IRIS data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.33 arcsec. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km/s and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336 \AA, Si IV 1394 \AA, and 1403 \AA, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to be the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in AIA, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.Comment: accepted by ApJ

    High-resolution Observations of the Shock Wave Behavior for Sunspot Oscillations with the Interface Region Imaging Spectrograph

    Full text link
    We present the first results of sunspot oscillations from observations by the Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is identified in both the slit-jaw images and the spectra of several emission lines formed in the transition region and chromosphere. We first apply a single Gaussian fit to the profiles of the Mgii 2796.35 {\AA}, Cii 1335.71 {\AA}, and Si iv 1393.76 {\AA} lines in the sunspot. The intensity change is about 30%. The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of about 10 km/s in Si iv. In the umbra the Si iv oscillation lags those of Cii and Mgii by about 3 and 12 s, respectively. The line width suddenly increases as the Doppler shift changes from redshift to blueshift. However, we demonstrate that this increase is caused by the superposition of two emission components. We then perform detailed analysis of the line profiles at a few selected locations on the slit. The temporal evolution of the line core is dominated by the following behavior: a rapid excursion to the blue side, accompanied by an intensity increase, followed by a linear decrease of the velocity to the red side. The maximum intensity slightly lags the maximum blueshift in Si iv, whereas the intensity enhancement slightly precedes the maximum blueshift in Mgii. We find a positive correlation between the maximum velocity and deceleration, a result that is consistent with numerical simulations of upward propagating magnetoacoustic shock waves.Comment: 5 figures, in ApJ. Correction of time lags (correct values are 3 and 12s) made on June 17 201

    Homologous Helical Jets: Observations by IRIS, SDO and Hinode and Magnetic Modeling with Data-Driven Simulations

    Full text link
    We report on observations of recurrent jets by instruments onboard the Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO) and Hinode spacecrafts. Over a 4-hour period on July 21st 2013, recurrent coronal jets were observed to emanate from NOAA Active Region 11793. FUV spectra probing plasma at transition region temperatures show evidence of oppositely directed flows with components reaching Doppler velocities of +/- 100 km/s. Raster Doppler maps using a Si IV transition region line show all four jets to have helical motion of the same sense. Simultaneous observations of the region by SDO and Hinode show that the jets emanate from a source region comprising a pore embedded in the interior of a supergranule. The parasitic pore has opposite polarity flux compared to the surrounding network field. This leads to a spine-fan magnetic topology in the coronal field that is amenable to jet formation. Time-dependent data-driven simulations are used to investigate the underlying drivers for the jets. These numerical experiments show that the emergence of current-carrying magnetic field in the vicinity of the pore supplies the magnetic twist needed for recurrent helical jet formation.Comment: 15 pages, 10 figures, accepted by Ap

    Prevalence of Small-scale Jets from the Networks of the Solar Transition Region and Chromosphere

    Full text link
    As the interface between the Sun's photosphere and corona, the chromosphere and transition region play a key role in the formation and acceleration of the solar wind. Observations from the Interface Region Imaging Spectrograph reveal the prevalence of intermittent small-scale jets with speeds of 80-250 km/s from the narrow bright network lanes of this interface region. These jets have lifetimes of 20-80 seconds and widths of 300 km or less. They originate from small-scale bright regions, often preceded by footpoint brightenings and accompanied by transverse waves with ~20 km/s amplitudes. Many jets reach temperatures of at least ~100000 K and constitute an important element of the transition region structures. They are likely an intermittent but persistent source of mass and energy for the solar wind.Comment: Figs 1-4 & S1-S5; Movies S1-S8; published in Science, including the main text and supplementary materials. Reference: H. Tian, E. E. DeLuca, S. R. Cranmer, et al., Science 346, 1255711 (2014

    Detection of supersonic downflows and associated heating events in the transition region above sunspots

    Get PDF
    Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0″33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s–1 and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to be the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.Publisher PDFPeer reviewe
    • …
    corecore