We present the first results of sunspot oscillations from observations by the
Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is
identified in both the slit-jaw images and the spectra of several emission
lines formed in the transition region and chromosphere. We first apply a single
Gaussian fit to the profiles of the Mgii 2796.35 {\AA}, Cii 1335.71 {\AA}, and
Si iv 1393.76 {\AA} lines in the sunspot. The intensity change is about 30%.
The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of
about 10 km/s in Si iv. In the umbra the Si iv oscillation lags those of Cii
and Mgii by about 3 and 12 s, respectively. The line width suddenly increases
as the Doppler shift changes from redshift to blueshift. However, we
demonstrate that this increase is caused by the superposition of two emission
components. We then perform detailed analysis of the line profiles at a few
selected locations on the slit. The temporal evolution of the line core is
dominated by the following behavior: a rapid excursion to the blue side,
accompanied by an intensity increase, followed by a linear decrease of the
velocity to the red side. The maximum intensity slightly lags the maximum
blueshift in Si iv, whereas the intensity enhancement slightly precedes the
maximum blueshift in Mgii. We find a positive correlation between the maximum
velocity and deceleration, a result that is consistent with numerical
simulations of upward propagating magnetoacoustic shock waves.Comment: 5 figures, in ApJ. Correction of time lags (correct values are 3 and
12s) made on June 17 201