3,962 research outputs found

    The effects of matter density uncertainties on neutrino oscillations in the Earth

    Get PDF
    We compare three different methods to evaluate uncertainties in the Earth's matter density profile, which are relevant to long baseline experiments, such as neutrino factories.Comment: 3 pages, 1 figure. Talk given at the NuFact'02 Workshop, London, 1-6 July, 200

    Design of a high power production target for the Beam Dump Facility at CERN

    Full text link
    The Beam Dump Facility (BDF) project is a proposed general-purpose facility at CERN, dedicated to beam dump and fixed target experiments. In its initial phase, the facility is foreseen to be exploited by the Search for Hidden Particles (SHiP) experiment. Physics requirements call for a pulsed 400 GeV/c proton beam as well as the highest possible number of protons on target (POT) each year of operation, in order to search for feebly interacting particles. The target/dump assembly lies at the heart of the facility, with the aim of safely absorbing the full high intensity Super Proton Synchrotron (SPS) beam, while maximizing the production of charmed and beauty mesons. High-Z materials are required for the target/dump, in order to have the shortest possible absorber and reduce muon background for the downstream experiment. The high average power deposited on target (305 kW) creates a challenge for heat removal. During the BDF facility Comprehensive Design Study (CDS), launched by CERN in 2016, extensive studies have been carried out in order to define and assess the target assembly design. These studies are described in the present contribution, which details the proposed design of the BDF production target, as well as the material selection process and the optimization of the target configuration and beam dilution. One of the specific challenges and novelty of this work is the need to consider new target materials, such as a molybdenum alloy (TZM) as core absorbing material and Ta2.5W as cladding. Thermo-structural and fluid dynamics calculations have been performed to evaluate the reliability of the target and its cooling system under beam operation. In the framework of the target comprehensive design, a preliminary mechanical design of the full target assembly has also been carried out, assessing the feasibility of the whole target system.Comment: 17 pages, 18 figure

    The LHCb experiment control system : on the path to full automation

    No full text
    http://accelconf.web.cern.ch/AccelConf/icalepcs2011/papers/mobaust06.pdfInternational audienceThe experiment control system is in charge of the configuration, control and monitoring of the different subdetectors and of all areas of the online system. The building blocks of the control system are based on the PVSS SCADA System complemented by a control Framework developed in common for the 4 LHC experiments. This framework includes an "expert system" like tool called SMI++ which is used for the system automation. The experiment's operations are now almost completely automated, driven by a top-level object called Big-Brother, which pilots all the experiment's standard procedures and the most common error-recovery procedures. The architecture, tools and mechanisms used for the implementation as well as some operational examples will be described

    The role of matter density uncertainties in the analysis of future neutrino factory experiments

    Full text link
    Matter density uncertainties can affect the measurements of the neutrino oscillation parameters at future neutrino factory experiments, such as the measurements of the mixing parameters Ξ13\theta_{13} and \deltacp. We compare different matter density uncertainty models and discuss the possibility to include the matter density uncertainties in a complete statistical analysis. Furthermore, we systematically study in which measurements and where in the parameter space matter density uncertainties are most relevant. We illustrate this discussion with examples that show the effects as functions of different magnitudes of the matter density uncertainties. We find that matter density uncertainties are especially relevant for large \stheta \gtrsim 10^{-3}. Within the KamLAND-allowed range, they are most relevant for the precision measurements of \stheta and \deltacp, but less relevant for ``binary'' measurements, such as for the sign of \ldm, the sensitivity to \stheta, or the sensitivity to maximal CP violation. In addition, we demonstrate that knowing the matter density along a specific baseline better than to about 1% precision means that all measurements will become almost independent of the matter density uncertainties.Comment: 21 pages, 7 figures, LaTeX. Final version to be published in Phys. Rev.

    Neutrino tomography - Learning about the Earth's interior using the propagation of neutrinos

    Full text link
    Because the propagation of neutrinos is affected by the presence of Earth matter, it opens new possibilities to probe the Earth's interior. Different approaches range from techniques based upon the interaction of high energy (above TeV) neutrinos with Earth matter, to methods using the MSW effect on the neutrino oscillations of low energy (MeV to GeV) neutrinos. In principle, neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.) can be used. In this talk, we summarize and compare different approaches with an emphasis on more recent developments. In addition, we point out other geophysical aspects relevant for neutrino oscillations.Comment: 22 pages, 9 figures. Proceedings of ``Neutrino sciences 2005: Neutrino geophysics'', December 14-16, 2005, Honolulu, USA. Minor changes, some references added. Final version to appear in Earth, Moon, and Planet

    Measuring CP violation and mass ordering in joint long baseline experiments with superbeams

    Get PDF
    We propose to measure the CP phase ήCP\delta_{\rm CP}, the magnitude of the neutrino mixing matrix element ∣Ue3∣|U_{e3}| and the sign of the atmopheric scale mass--squared difference Δm312\Delta{\rm m}^2_{31} with a superbeam by the joint analysis of two different long baseline neutrino oscillation experiments. One is a long baseline experiment (LBL) at 300 km and the other is a very long baseline (VLBL) experiment at 2100 km. We take the neutrino source to be the approved high intensity proton synchrotron, HIPA. The neutrino beam for the LBL is the 2-degree off-axis superbeam and for the VLBL, a narrow band superbeam. Taking into account all possible errors, we evaluate the event rates required and the sensitivities that can be attained for the determination of ήCP\delta_{\rm CP} and the sign of Δm312\Delta m^2_{31}. We arrive at a representative scenario for a reasonably precise probe of this part of the neutrino physics.Comment: 25 RevTEX pages, 16 PS figures, revised figure captions and references adde

    Patients with ankylosing spondylitis have increased sick leave—a registry-based case–control study over 7 yrs

    Get PDF
    Objectives. Using prospectively collected registry data to investigate sick leave (sickness benefit and sickness compensation) over a 7-yr period in patients with AS in comparison with population-based controls matched for age, sex and residential area
    • 

    corecore