188 research outputs found

    On game chromatic number analogues of Mycielsians and Brooks' Theorem

    Get PDF
    The vertex coloring game is a two-player game on a graph with given color set in which the first player attempts to properly color the graph and the second attempts to prevent a proper coloring from being achieved. The smallest number of colors for which the first player can win no matter how the second player plays is called the game chromatic number of the graph. In this paper we initiate the study of game chromatic number for Mycielskians and a game chromatic number analogue of Brooks' Theorem (which characterizes graphs for which chromatic number is at most the maximum degree of the graph). In particular, we determine the game chromatic number of Mycielskians of complete graphs, complete bipartite graphs, and cycles. In the direction of Brooks' Theorem, we show that if there are few vertices of maximum degree or if all vertices of maximum degree are at least three edges apart, then the game chromatic number is at most the maximum degree of the grap

    Grow With the Challenge – Microbial Effects on Epithelial Proliferation, Carcinogenesis, and Cancer Therapy

    Get PDF
    The eukaryotic host is in close contact to myriads of resident and transient microbes, which influence the crucial physiological pathways. Emerging evidence points to their role of host–microbe interactions for controlling tissue homeostasis, cell fate decisions, and regenerative capacity in epithelial barrier organs including the skin, lung, and gut. In humans and mice, it has been shown that the malignant tumors of these organs harbor an altered microbiota. Mechanistic studies have shown that the altered metabolic properties and secreted factors contribute to epithelial carcinogenesis and tumor progression. Exciting recent work points toward a crucial influence of the associated microbial communities on the response to chemotherapy and immune-check point inhibitors during cancer treatment, which suggests that the modulation of the microbiota might be a powerful tool for personalized oncology. In this article, we provide an overview of how the bacterial signals and signatures may influence epithelial homeostasis across taxa from cnidarians to vertebrates and delineate mechanisms, which might be potential targets for therapy of human diseases by either harnessing barrier integrity (infection and inflammation) or restoring uncontrolled proliferation (cancer)

    Neuropeptide S receptor gene - converging evidence for a role in panic disorder

    Get PDF
    Animal studies have suggested neuropeptide S (NPS) and its receptor (NPSR) to be involved in the pathogenesis of anxiety-related behavior. In this study, a multilevel approach was applied to further elucidate the role of NPS in the etiology of human anxiety. The functional NPSR A/T (Asn¹⁰⁷Ile) variant (rs324981) was investigated for association with (1) panic disorder with and without agoraphobia in two large, independent case-control studies, (2) dimensional anxiety traits, (3) autonomic arousal level during a behavioral avoidance test and (4) brain activation correlates of anxiety-related emotional processing in panic disorder. The more active NPSR rs324981 T allele was found to be associated with panic disorder in the female subgroup of patients in both samples as well as in a meta-analytic approach. The T risk allele was further related to elevated anxiety sensitivity, increased heart rate and higher symptom reports during a behavioral avoidance test as well as decreased activity in the dorsolateral prefrontal, lateral orbitofrontal and anterior cingulate cortex during processing of fearful faces in patients with panic disorder. The present results provide converging evidence for a female-dominant role of NPSR gene variation in panic disorder potentially through heightened autonomic arousal and distorted processing of anxiety-relevant emotional stimuli

    Brain Potentials Highlight Stronger Implicit Food Memory for Taste than Health and Context Associations

    Get PDF
    Increasingly consumption of healthy foods is advised to improve population health. Reasons people give for choosing one food over another suggest that non-sensory features like health aspects are appreciated as of lower importance than taste. However, many food choices are made in the absence of the actual perception of a food's sensory properties, and therefore highly rely on previous experiences of similar consumptions stored in memory. In this study we assessed the differential strength of food associations implicitly stored in memory, using an associative priming paradigm. Participants (N = 30) were exposed to a forced-choice picture-categorization task, in which the food or non-food target images were primed with either non-sensory or sensory related words. We observed a smaller N400 amplitude at the parietal electrodes when categorizing food as compared to non-food images. While this effect was enhanced by the presentation of a food-related word prime during food trials, the primes had no effect in the non-food trials. More specifically, we found that sensory associations are stronger implicitly represented in memory as compared to non-sensory associations. Thus, this study highlights the neuronal mechanisms underlying previous observations that sensory associations are important features of food memory, and therefore a primary motive in food choice.</p

    Gender Differences in Associations of Glutamate Decarboxylase 1 Gene (GAD1) Variants with Panic Disorder

    Get PDF
    Background: Panic disorder is common (5% prevalence) and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females. Methodology/Principal Findings: Nineteen single nucleotide polymorphisms (SNPs) tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584). Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotype×gender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165) in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotype×gender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score. Conclusions/Significance: The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder

    Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    Get PDF
    Background: The ‘exposome’ represents the accumulation of all environmental exposures across a lifetime. Topdown strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics) defines an individual’s metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. Methods: High-resolution 1H NMR spectroscopy (metabonomics) was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. Results: Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4- deoxy-erythronic acid) or one-carbon metabolism (dimethylglycine, creatinine, creatine), were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels) was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. Conclusions: This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental concentrations, paving the way for exposome research. Keywords: metabonomics, cadmium, environmental health, exposome, metabolomics, molecular epidemiolog

    No Difference in Power Output for Seated Versus Standing Position During the Wingate Anaerobic Power Test

    No full text
    PURPOSE: To determine if differences in power output exist between the seated versus standing position during the Wingate Anaerobic Power Test (WAPT). METHODS: 14 males (body mass 79.6±7.1 kg) from a College Club level ice hockey team participated in the study. All testing occurred at the same time of day following a 4 h fast. On day one, body fat percent and fat free mass (FFM) were determined using air displacement plethysmography and subjects were given two practice Wingate Anaerobic Power tests (one each in the seated and standing position). On two different days, the subjects performed two 30 s maximal effort WAPT, with each test separated by 7 days. All data were collected using a Monark computerized bicycle ergometer. Following a standard 5 min warm-up, each subject was given a 3 minute rest. The resistance for testing was 7.5% of body mass. Subjects were ramped up during the test with load application and data collection beginning when subjects reached 120 rpm. Differences in power output between the seated and standing position were determined using a paired t-test, with significance set at p≤0.05. RESULTS: The data (means±SD) for the primary dependent variables are shown in the table below. Peak Power (W) Peak Power (W/kg) Peak Power (W/kg/FFM) Average Power (W) Average Power (W/kg) Average Power (W/kg/FFM) Seated 959.1±96.7 12.1±1.4 13.5±1.4 618.6±48.3 7.8±0.5 8.7±0.5 Standing 971.5±90.0 12.2±1.5 13.7±1.4 629.3±45.8 7.9±0.7 8.9±.07 There were no significant differences between the two positions for any of the primary dependent variables. CONCLUSION: During Wingate Anaerobic Power testing subjects should be allowed to select the most comfortable position for testing, as both seated and standing produced similar peak and average power measures

    Bone buffering of acid and base in humans

    No full text
    corecore