182 research outputs found

    Association of Reported Fish Intake and Supplementation Status with the Omega-3 Index

    Get PDF
    Background: An Omega-3 Index (O3I; EPA+DHA as a % of erythrocyte total fatty acids) in the desirable range (8%-12%) has been associated with improved heart and brain health. Objective: To determine the combination of fish intake and supplement use that is associated with an O3I of \u3e8%. Design: Two cross-sectional studies comparing the O3I to EPA+DHA/fish intake. Participants/setting: The first study included 28 individuals and assessed their fish and EPA+DHA intake using both a validated triple-pass 24-hr recall dietary survey and a single fish-intake question. The second study used de-identified data from 3,458 adults (84% from US) who self-tested their O3I and answered questions about their fish intake and supplement use. Statistical analyses performed: Study 1, chi-squared, one-way ANOVA, and Pearson correlations were computed. In Study 2, multi-variable regression models were used to predict O3I levels from reported fish/supplement intakes. Results: The mean ± SD O3I was 4.87 ± 1.32%, and 5.99 ± 2.29% in the first and second studies, respectively. Both studies showed that for every increase in fish intake category the O3I increased by 0.50–0.65% (p \u3c 0.0001). In the second study, about half of the population was taking omega-3 supplements, 32% reported no fish intake and 17% reported eating fish \u3e2 times per week. Taking an EPA+DHA supplement increased the O3I by 2.2% (p \u3c 0.0001). The odds of having an O3I of ≥8% were 44% in the highest intake group (≥3 servings/week and supplementation) and 2% in the lowest intake group (no fish intake or supplementation); and in those consuming 2 fish meals per week but not taking supplements (as per recommendations), 10%. Conclusion: Current AHA recommendations are unlikely to produce a desirable O3I. Consuming at least 3 fish servings per week plus taking an EPA+DHA supplement markedly increases the likelihood of achieving this target level

    BioThings Explorer: a query engine for a federated knowledge graph of biomedical APIs

    Full text link
    Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThing Explorer is distributed as a lightweight application that dynamically retrieves information at query time. More information can be found at https://explorer.biothings.io, and code is available at https://github.com/biothings/biothings_explorer

    Small-Quantity Lipid-Based Nutrient Supplements Increase Infants' Plasma Essential Fatty Acid Levels in Ghana and Malawi : A Secondary Outcome Analysis of the iLiNS-DYAD Randomized Trials

    Get PDF
    INTRODUCTION: Small-quantity (SQ) lipid-based nutrient supplements (LNSs) may influence infants' plasma fatty acid (FA) profiles, which could be associated with short- and long-term outcomes. OBJECTIVES: We aimed to determine the impact of SQ-LNS consumption on infants' plasma FA profiles in Ghana and Malawi. METHODS: Ghanaian (n = 1320) and Malawian (n = 1391) women ≤20 weeks pregnant were assigned to consume 60 mg iron and 400 μg folic acid daily until delivery [iron and folic acid (IFA) group], multiple-micronutrient supplements (MMNs) until 6 months postpartum (MMN group), or SQ-LNSs (∼7.8 linoleic acid:α-linolenic acid ratio) until 6 months postpartum (LNS group). LNS group infants received SQ-LNS from 6 to 18 months of age. We compared infant plasma FAs by intervention group in subsamples (n = 379 in Ghana; n = 442 in Malawi) at 6 and 18 months using ANOVA and Poisson regression models. Main outcomes were mean percentage compositions (%Cs; percentage of FAs by weight) of α-linolenic acid (ALA), linoleic acid (LA), EPA, DHA, and arachidonic acid (AA). RESULTS: At 6 months, LNS infants had greater mean ± SD ALA %Cs in Ghana (0.23 ± 0.08; IFA, 0.21 ± 0.06; MMN, 0.21 ± 0.07; P = 0.034) and Malawi (0.42 ± 0.16; IFA, 0.38 ± 0.15; MMN, 0.38 ± 0.14; P = 0.034) and greater AA values in Ghana (6.25 ± 1.24; IFA, 6.12 ± 1.13; MMN, 5.89 ± 1.24; P = 0.049). At 18 months, LNS infants had a tendency towards greater ALA (0.32 ± 0.16; IFA, 0.24 ± 0.08; MMN, 0.24 ± 0.10; P = 0.06) and LA (27.8 ± 3.6; IFA, 26.9 ± 2.9; MMN, 27.0 ± 3.1; P = 0.06) in Ghana, and greater ALA (0.45 ± 0.18; IFA, 0.39 ± 0.18; MMN, 0.39 ± 0.18; P < 0.001) and LA (29.7 ± 3.5; IFA, 28.7 ± 3.3; MMN, 28.6 ± 3.4; P = 0.011) in Malawi. The prevalence of ALA below the population-specific 10th percentile was lower in the LNS group compared to the MMN group, but not the IFA group. Groups did not differ significantly in plasma EPA or DHA levels. CONCLUSIONS: SQ-LNS increased infants' plasma essential FA levels in Ghana and Malawi, which may have implications for health and developmental outcomes. These trials were registered at clinicaltrials.gov as NCT00970866 and NCT01239693.acceptedVersionPeer reviewe

    Cas3 is a limiting factor for CRISPR-Cas immunity in Escherichia coli cells lacking H-NS

    Get PDF
    Background: CRISPR-Cas systems provide adaptive immunity to mobile genetic elements in prokaryotes. In many bacteria, including E. coli, a specialized ribonucleoprotein complex called Cascade enacts immunity by “an interference reaction" between CRISPR encoded RNA (crRNA) and invader DNA sequences called “protospacers”. Cascade recognizes invader DNA via short “protospacer adjacent motif” (PAM) sequences and crRNA-DNA complementarity. This triggers degradation of invader DNA by Cas3 protein and in some circumstances stimulates capture of new invader DNA protospacers for incorporation into CRISPR as “spacers” by Cas1 and Cas2 proteins, thus enhancing immunity. Co-expression of Cascade, Cas3 and crRNA is effective at giving E. coli cells resistance to phage lysis, if a transcriptional repressor of Cascade and CRISPR, H-NS, is inactivated (Δhns). We present further genetic analyses of the regulation of CRISPR-Cas mediated phage resistance in Δhns E. coli cells. Results: We observed that E. coli Type I-E CRISPR-Cas mediated resistance to phage λ was strongly temperature dependent, when repeating previously published experimental procedures. Further genetic analyses highlighted the importance of culture conditions for controlling the extent of CRISPR immunity in E. coli. These data identified that expression levels of cas3 is an important limiting factor for successful resistance to phage. Significantly, we describe the new identification that cas3 is also under transcriptional control by H-NS but that this is exerted only in stationary phase cells. Conclusions: Regulation of cas3 is responsive to phase of growth, and to growth temperature in E. coli, impacting on the efficacy of CRISPR-Cas immunity in these experimental systems

    Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide

    Get PDF
    We investigated toxicity of 2-3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis

    Effect of a primary health-care-based controlled trial for cardiorespiratory fitness in refugee women

    Get PDF
    BACKGROUND: Refugee women have a high risk of coronary heart disease with low physical activity as one possible mediator. Furthermore, cultural and environmental barriers to increasing physical activity have been demonstrated. The aim of the study was to evaluate the combined effect of an approximate 6-month primary health care- and community-based exercise intervention versus an individual written prescription for exercise on objectively assessed cardiorespiratory fitness in low-active refugee women. METHODS: A controlled clinical trial, named "Support for Increased Physical Activity", was executed among 243 refugee women recruited between November 2006 and April 2008 from two deprived geographic areas in southern Stockholm, Sweden. One geographic area provided the intervention group and the other area the control group. The control group was on a higher activity level at both baseline and follow-up, which was taken into consideration in the analysis by applying statistical models that accounted for this. Relative aerobic capacity and fitness level were assessed as the two main outcome measures. RESULTS: The intervention group increased their relative aerobic capacity and the percentage with an acceptable fitness level (relative aerobic capacity > 23 O2 mlxkgxmin-1) to a greater extent than the control group between baseline and the 6-month follow-up, after adjusting for possible confounders (P = 0.020). CONCLUSIONS: A combined primary health-care and community-based exercise programme (involving non-profit organizations) can be an effective strategy to increase cardiorespiratory fitness among low-active refugee women. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT00747942

    Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome

    Get PDF
    Purpose Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. Methods We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Results Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Conclusion Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome

    Inactivation of Pmel Alters Melanosome Shape But Has Only a Subtle Effect on Visible Pigmentation

    Get PDF
    PMEL is an amyloidogenic protein that appears to be exclusively expressed in pigment cells and forms intralumenal fibrils within early stage melanosomes upon which eumelanins deposit in later stages. PMEL is well conserved among vertebrates, and allelic variants in several species are associated with reduced levels of eumelanin in epidermal tissues. However, in most of these cases it is not clear whether the allelic variants reflect gain-of-function or loss-of-function, and no complete PMEL loss-of-function has been reported in a mammal. Here, we have created a mouse line in which the Pmel gene has been inactivated (Pmel−/−). These mice are fully viable, fertile, and display no obvious developmental defects. Melanosomes within Pmel−/− melanocytes are spherical in contrast to the oblong shape present in wild-type animals. This feature was documented in primary cultures of skin-derived melanocytes as well as in retinal pigment epithelium cells and in uveal melanocytes. Inactivation of Pmel has only a mild effect on the coat color phenotype in four different genetic backgrounds, with the clearest effect in mice also carrying the brown/Tyrp1 mutation. This phenotype, which is similar to that observed with the spontaneous silver mutation in mice, strongly suggests that other previously described alleles in vertebrates with more striking effects on pigmentation are dominant-negative mutations. Despite a mild effect on visible pigmentation, inactivation of Pmel led to a substantial reduction in eumelanin content in hair, which demonstrates that PMEL has a critical role for maintaining efficient epidermal pigmentation

    Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects.

    Get PDF
    Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course
    corecore