2,010 research outputs found

    Modeling atmospheric effects of the September 1859 Solar Flare

    Get PDF
    We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.Comment: Revised version including improved figures; Accepted for publication in Geophys. Res. Lett, chosen to be highlighted by AG

    Ozone Depletion from Nearby Supernovae

    Get PDF
    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova must occur at <8 pc. Based on the latest data, the time-averaged galactic rate of core-collapse supernovae occurring within 8 pc is ~1.5/Gyr. In comparing our calculated ozone depletions with those of previous studies, we find them to be significantly less severe than found by Ruderman (1974), and consistent with Whitten et al. (1976). In summary, given the amplitude of the effect, the rate of nearby supernovae, and the ~Gyr time scale for multicellular organisms on Earth, this particular pathway for mass extinctions may be less important than previously thought.Comment: 24 pages, 4 Postscript figures, to appear in The Astrophysical Journal, 2003 March 10, vol. 58

    Climatic and Biogeochemical Effects of a Galactic Gamma-Ray Burst

    Full text link
    It is likely that one or more gamma-ray bursts within our galaxy have strongly irradiated the Earth in the last Gy. This produces significant atmospheric ionization and dissociation, resulting in ozone depletion and DNA-damaging ultraviolet solar flux reaching the surface for up to a decade. Here we show the first detailed computation of two other significant effects. Visible opacity of NO2 is sufficient to reduce solar energy at the surface up to a few percent, with the greatest effect at the poles, which may be sufficient to initiate glaciation. Rainout of dilute nitric acid is could have been important for a burst nearer than our conservative nearest burst. These results support the hypothesis that the characteristics of the late Ordovician mass extinction are consistent with GRB initiation.Comment: 12 pages, 2 figures, in press at Geophysical Research Letters. Minor revisions, including details on falsifying the hypothesi

    Natural Cycles, Gases

    Get PDF
    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust

    A Model Study of the Impact of Source Gas Changes on the Stratosphere for 1850-2100

    Get PDF
    The long term stratospheric impacts due to emissions of CO2, CH4, N2O, and ozone depleting substances (ODSs) are investigated using an updated version of the Goddard two-dimensional (2D) model. Perturbation simulations with the ODSs, CO2, CH4, and N2O varied individually are performed to isolate the relative roles of these gases in driving stratospheric changes over the 1850-2100 time period. We also show comparisons with observations and the God- 40 dard Earth Observing System chemistry-climate model simulations for the time period 1970-2100 to illustrate that the 2D model captures the basic processes responsible for longterm stratospheric change. The 2D simulations indicate that prior to 1940, the 45 ozone increases due to CO2 and CH4 loading outpace the ozone losses due to increasing N2O and carbon tetrachloride (CCl4) emissions, so that ozone reaches a broad maximum during the 1920s-1930s. This preceeds the significant ozone depletion during approx. 1960-2050 driven by the ODS loading. During the latter half of the 21st century as ODS emissions diminish, CO2, N2O, and CH4 loading will all have significant impacts on global total ozone based on the IPCC AIB (medium) scenario, with CO2 having the largest individual effect. Sensitivity tests illustrate that due to the strong chemical interaction between methane and chlorine, the CH4 impact on total ozone becomes significantly more positive with larger ODS loading. The model simulations also show that changes in stratospheric temperature, Brewer-Dobson circulation (BDC), and age of air during 1850-2100 are controlled mainly by the CO2 and ODS loading. The simulated acceleration of the BDC causes the age of air to decrease by approx. 1 year from 1860-2100. The corresponding photochemical lifetimes of N2O, CFCl3, CF2Cl2, and CCl4 decrease by 11-13% during 1960-2100 due to the acceleration of the BDC, with much smaller lifetime changes 4%) caused by changes in the photochemical loss rates

    Titan's influence on Saturnian substorm occurrence

    Get PDF
    Substorms play an important role in the energization and transport of plasmas in planetary magnetospheres, including the shedding of the mass added by moons in the case of Jupiter and Saturn. Mass shedding occurs through rapid reconnection in the near tail resulting in dipolarization on the magnetospheric side of the reconnection point and plasmoid formation down tail. Observations of these sudden reconnection events in Saturn’s near-tail region provide additional insight into this process. Saturnian substorms, at least on occasion, have a plasmoid formation phase leading to a traveling compression region. Changes in the field strength across reconnection events suggest that open flux has been removed from the tail. The timing of tail reconnection events appears to be controlled by both the orbital phase of Titan, and the variable stretching of the near-tail field as Saturn rotates.Fil: Russell, C. T.. University of California; Estados UnidosFil: Jackman, C. M.. Imperial College London; Reino UnidoFil: Wei, H. Y.. University of California; Estados UnidosFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Imperial College Of Science And Technology; Reino UnidoFil: Dougherty, M. K.. Imperial College Of Science And Technology; Reino Unid

    Atmospheric oxidation chemistry and ozone production: Results from SHARP 2009 in Houston, Texas

    Get PDF
    This study considers whether spikes in nitrate in snow sampled at Summit, Greenland, from August 2000 to August 2002 are related to solar proton events. After identifying tropospheric sources of nitrate on the basis of correlations with sulfate, ammonium, sodium, and calcium, we use the three-dimensional global Whole Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate spikes. Model calculations confirm that solar proton events significantly impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months following the major 9 November 2000 solar proton event. However, solar proton event (SPE)-enhanced NOy calculated within the atmospheric column is too small to account for the observed nitrate peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not readily accounted for by measurement correlations are likely of anthropogenic origin. These results, consistent with other recent studies, imply that nitrate spikes in ice cores are not suitable proxies for individual SPEs and motivate the need to identify alternative proxies

    Nitrate deposition to surface snow at Summit, Greenland, following the 9 November 2000 solar proton event

    Get PDF
    Abstract This study considers whether spikes in nitrate in snow sampled at Summit, Greenland, from August 2000 to August 2002 are related to solar proton events. After identifying tropospheric sources of nitrate on the basis of correlations with sulfate, ammonium, sodium, and calcium, we use the three-dimensional global Whole Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate spikes. Model calculations confirm that solar proton events significantly impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months following the major 9 November 2000 solar proton event. However, solar proton event (SPE)-enhanced NOy calculated within the atmospheric column is too small to account for the observed nitrate peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not readily accounted for by measurement correlations are likely of anthropogenic origin. These results, consistent with other recent studies, imply that nitrate spikes in ice cores are not suitable proxies for individual SPEs and motivate the need to identify alternative proxies. Key Points A global model simulates nitrate deposition from solar proton events Soluble ion correlations in Summit snow identify tropospheric sources of nitrate Nitrate ions in snow are found not to be a good proxy for solar proton events

    Middle Atmosphere Response to Different Descriptions of the 11-Year Solar Cycle in Spectral Irradiance in a Chemistry-Climate Model

    Get PDF
    The 11-year solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3-6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response 50 using the SORCE SSI is nearly 2 K per 100 units 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the atmospheric response to arbitrary SSI variations
    corecore