14 research outputs found

    ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing

    No full text
    Copyright ©ERS 2018. Recently, this international task force reported the general considerations for bronchial challenge testing and the performance of the methacholine challenge test, a "direct" airway challenge test. Here, the task force provides an updated description of the pathophysiology and the methods to conduct indirect challenge tests. Because indirect challenge tests trigger airway narrowing through the activation of endogenous pathways that are involved in asthma, indirect challenge tests tend to be specific for asthma and reveal much about the biology of asthma, but may be less sensitive than direct tests for the detection of airway hyperresponsiveness. We provide recommendations for the conduct and interpretation of hyperpnoea challenge tests such as dry air exercise challenge and eucapnic voluntary hyperpnoea that provide a single strong stimulus for airway narrowing. This technical standard expands the recommendations to additional indirect tests such as hypertonic saline, mannitol and adenosine challenge that are incremental tests, but still retain characteristics of other indirect challenges. Assessment of airway hyperresponsiveness, with direct and indirect tests, are valuable tools to understand and to monitor airway function and to characterise the underlying asthma phenotype to guide therapy. The tests should be interpreted within the context of the clinical features of asthma

    ERS technical standard on bronchial challenge testing: General considerations and performance of methacholine challenge tests

    Get PDF
    This international task force report updates general considerations for bronchial challenge testing and the performance of the methacholine challenge test. There are notable changes from prior recommendations in order to accommodate newer delivery devices. Rather than basing the test result upon a methacholine concentration (provocative concentration (PC20) causing a 20% fall in forced expiratory volume in 1 s (FEV1)), the new recommendations base the result upon the delivered dose of methacholine causing a 20% fall in FEV1 (provocative dose (PD20)). This end-point allows comparable results from different devices or protocols, thus any suitable nebuliser or dosimeter may be used, so long as the delivery characteristics are known. Inhalation may be by tidal breathing using a breath-actuated or continuous nebuliser for 1 min (or more), or by a dosimeter with a suitable breath count. Tests requiring maximal inhalations to total lung capacity are not recommended because the bronchoprotective effect of a deep breath reduces the sensitivity of the test

    International consensus on lung function testing during the COVID-19 pandemic and beyond.

    Get PDF
    Coronavirus disease 2019 (COVID-19) has negatively affected the delivery of respiratory diagnostic services across the world due to the potential risk of disease transmission during lung function testing. Community prevalence, reoccurrence of COVID-19 surges and the emergence of different variants of SARS-CoV-2 have impeded attempts to restore services. Finding consensus on how to deliver safe lung function services for both patients attending and for staff performing the tests are of paramount importance. This international statement presents the consensus opinion of 23 experts in the field of lung function and respiratory physiology balanced with evidence from the reviewed literature. It describes a robust roadmap for restoration and continuity of lung function testing services during the COVID-19 pandemic and beyond. Important strategies presented in this consensus statement relate to the patient journey when attending for lung function tests. We discuss appointment preparation, operational and environmental issues, testing room requirements including mitigation strategies for transmission risk, requirement for improved ventilation, maintaining physical distance and use of personal protection equipment. We also provide consensus opinion on precautions relating to specific tests, filters, management of special patient groups and alternative options to testing in hospitals. The pandemic has highlighted how vulnerable lung function services are and forces us to re-think how long-term mitigation strategies can protect our services during this and any possible future pandemic. This statement aspires to address the safety concerns that exist and provide strategies to make lung function tests and the testing environment safer when tests are required

    An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease

    Full text link
    Field walking tests are commonly employed to evaluate exercise capacity, assess prognosis and evaluate treatment response in chronic respiratory diseases. In recent years, there has been a wealth of new literature pertinent to the conduct of the 6-min walk test (6MWT), and a growing evidence base describing the incremental and endurance shuttle walk tests (ISWT and ESWT, respectively). The aim of this document is to describe the standard operating procedures for the 6MWT, ISWT and ESWT, which can be consistently employed by clinicians and researchers. The Technical Standard was developed by a multidisciplinary and international group of clinicians and researchers with expertise in the application of field walking tests. The procedures are underpinned by a concurrent systematic review of literature relevant to measurement properties and test conduct in adults with chronic respiratory disease. Current data confirm that the 6MWT, ISWT and ESWT are valid, reliable and responsive to change with some interventions. However, results are sensitive to small changes in methodology. It is important that two tests are conducted for the 6MWT and ISWT. This Technical Standard for field walking tests reflects current evidence regarding procedures that should be used to achieve robust results
    corecore