552 research outputs found
Neutrix Calculus and Finite Quantum Field Theory
In general, quantum field theories (QFT) require regularizations and infinite
renormalizations due to ultraviolet divergences in their loop calculations.
Furthermore, perturbation series in theories like QED are not convergent
series, but are asymptotic series. We apply neutrix calculus, developed in
connection with asymptotic series and divergent integrals, to QFT,obtaining
finite renormalizations. While none of the physically measurable results in
renormalizable QFT is changed, quantum gravity is rendered more manageable in
the neutrix framework.Comment: 10 pages; LaTeX; version to appear in J. Phys. A: Math. Gen. as a
Letter to the Edito
A decade in review after Idiopathic Scoliosis was first called a complex trait-A tribute to the late Dr. Yves Cotrel for his support in studies of etiology of scoliosis
Adolescent Idiopathic Scoliosis (AIS) is a prevalent and important spine disorder in the pediatric age group. An increased family tendency was observed for a long time, but the underlying genetic mechanism was uncertain. In 1999, Dr. Yves Cotrel founded the Cotrel Foundation in the Institut de France, which supported collaboration of international researchers to work together to better understand the etiology of AIS. This new concept of AIS as a complex trait evolved in this setting among researchers who joined the annual Cotrel meetings. It is now over a decade since the first proposal of the complex trait genetic model for AIS. Here, we review in detail the vast information about the genetic and environmental factors in AIS pathogenesis gathered to date. More importantly, new insights into AIS etiology were brought to us through new research data under the perspective of a complex trait. Hopefully, future research directions may lead to better management of AIS, which has a tremendous impact on affected adolescents in terms of both physical growth and psychological development
A decade in review after Idiopathic Scoliosis was first called a complex trait-A tribute to the late Dr. Yves Cotrel for his support in studies of etiology of scoliosis
Adolescent Idiopathic Scoliosis (AIS) is a prevalent and important spine disorder in the pediatric age group. An increased family tendency was observed for a long time, but the underlying genetic mechanism was uncertain. In 1999, Dr. Yves Cotrel founded the Cotrel Foundation in the Institut de France, which supported collaboration of international researchers to work together to better understand the etiology of AIS. This new concept of AIS as a complex trait evolved in this setting among researchers who joined the annual Cotrel meetings. It is now over a decade since the first proposal of the complex trait genetic model for AIS. Here, we review in detail the vast information about the genetic and environmental factors in AIS pathogenesis gathered to date. More importantly, new insights into AIS etiology were brought to us through new research data under the perspective of a complex trait. Hopefully, future research directions may lead to better management of AIS, which has a tremendous impact on affected adolescents in terms of both physical growth and psychological development
Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective.
The traditional method of assessing bone mineral density (BMD; given by bone mineral content [BMC] divided by projected bone area [Ap], BMD = BMC/Ap) has come under strong criticism by various authors. Their criticism being that the projected bone "area" (Ap) will systematically underestimate the skeletal bone "volume" of taller subjects. To reduce the confounding effects of bone size, an alternative ratio has been proposed called bone mineral apparent density [BMAD = BMC/(Ap)3/2]. However, bone size is not the only confounding variable associated with BMC. Others include age, sex, body size, and maturation. To assess the dimensional relationship between BMC and projected bone area, independent of other confounding variables, we proposed and fitted a proportional allometric model to the BMC data of the L2-L4 vertebrae from a previously published study. The projected bone area exponents were greater than unity for both boys (1.43) and girls (1.02), but only the boy's fitted exponent was not different from that predicted by geometric similarity (1.5). Based on these exponents, it is not clear whether bone mass acquisition increases in proportion to the projected bone area (Ap) or an estimate of projected bone volume (Ap)3/2. However, by adopting the proposed methods, the analysis will automatically adjust BMC for differences in projected bone size and other confounding variables for the particular population being studied. Hence, the necessity to speculate as to the theoretical value of the exponent of Ap, although interesting, becomes redundant
Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period
Chronic high surface ozone (O3) levels and the increasing sulfur oxides (SOx = SO2+SO4) ambient concentrations over South Coast (SC) and other areas of California (CA) are affected by both local emissions and long-range transport. In this paper, multi-scale tracer, full-chemistry and adjoint simulations using the STEM atmospheric chemistry model are conducted to assess the contribution of local emission sourcesto SC O3 and to evaluate the impacts of transported sulfur and local emissions on the SC sulfur budgetduring the ARCTAS-CARB experiment period in 2008. Sensitivity simulations quantify contributions of biogenic and fire emissions to SC O3 levels. California biogenic and fire emissions contribute 3â4 ppb to near-surface O3 over SC, with larger contributions to other regions in CA. During a long-range transport event from Asia starting from 22 June, high SOx levels (up to ~0.7 ppb of SO2 and ~1.3 ppb of SO4) is observed above ~6 km, but they did not affect CA surface air quality. The elevated SOx observed at 1â4 km is estimated to enhance surface SOx over SC by ~0.25 ppb (upper limit) on ~24 June. The near-surface SOx levels over SC during the flight week are attributed mostly to local emissions. Two anthropogenic SOx emission inventories (EIs) from the California Air Resources Board (CARB) and the US Environmental Protection Agency (EPA) are compared and applied in 60 km and 12 km chemical transport simulations, and the results are compared withobservations. The CARB EI shows improvements over the National Emission Inventory (NEI) by EPA, but generally underestimates surface SC SOx by about a factor of two. Adjoint sensitivity analysis indicated that SO2 levels at 00:00 UTC (17:00 local time) at six SC surface sites were influenced by previous day maritime emissions over the ocean, the terrestrial emissions over nearby urban areas, and by transported SO2 from the north through both terrestrial and maritime areas. Overall maritime emissions contribute 10â70% of SO2 and 20â60% fine SO4 on-shore and over the most terrestrial areas, with contributions decreasing with in-land distance from the coast. Maritime emissions also modify the photochemical environment, shifting O3 production over coastal SC to more VOC-limited conditions. These suggest an important role for shipping emission controls in reducing fine particle and O3concentrations in SC
Dimensionless supersymmetry breaking couplings, flat directions, and the origin of intermediate mass scales
The effects of supersymmetry breaking are usually parameterized by soft
couplings of positive mass dimensions. However, realistic models also predict
the existence of suppressed, but non-vanishing, dimensionless
supersymmetry-breaking couplings. These couplings are technically hard, but do
not lead to disastrous quadratic divergences in scalar masses, and may be
crucial for understanding low-energy physics. In particular, analytic scalar
quartic couplings that break supersymmetry can lead to intermediate scale
vacuum expectation values along nearly-flat directions. I study the one-loop
effective potential for flat directions in the presence of dimensionless
supersymmetry-breaking terms, and discuss the corresponding renormalization
group equations. I discuss two applications: a minimal model of automatic
R-parity conservation, and an extension of this minimal model which provides a
solution to the \mu problem and an invisible axion.Comment: 28 pages, LaTeX with epsf and axodraw.st
Sfermion masses in Nelson-Strassler type of models: SUSY standard models coupled with SCFTs
We study soft SUSY breaking parameters in the Nelson-Strassler type of
models: SUSY standard models coupled with SCFTs. In this type of models, soft
SUSY breaking parameters including sfermion masses can be suppressed around the
decoupling scale of SCFTs. We clarify the condition to derive exponential
suppression of sfermion masses within the framework of pure SCFTs. Such
behavior is favorable for degeneracy of sfermion masses. However, the realistic
sfermion masses are not quite degenerate due to the gauge couplings and the
gaugino masses in the SM sector. We show the sfermion mass spectrum obtained in
such models. The aspect of suppression for the soft SUSY breaking parameters is
also demonstrated in an explicit model. We also give a mechanism generating the
-term of the Electro-Weak scale by a singlet field coupled with the SCFT.Comment: 28 pages, 8 figures, LaTeX file; corrected typos and references adde
Dynamic magnetic resonance imaging in assessing lung function in adolescent idiopathic scoliosis: a pilot study of comparison before and after posterior spinal fusion
<p>Abstract</p> <p>Background</p> <p>Restrictive impairment is the commonest reported pulmonary deficit in AIS, which improves following surgical operation. However, exact mechanism of how improvement is brought about is unknown. Dynamic fast breath-hold (BH)-MR imaging is a recent advance which provides direct quantitative visual assessment of pulmonary function. By using above technique, change in lung volume, chest wall and diaphragmatic motion in AIS patients before and six months after posterior spinal fusion surgery were measured.</p> <p>Methods</p> <p>16 patients with severe right-sided predominant thoracic scoliosis (standing Cobb's angle 50° -82°, mean 60°) received posterior spinal fusion without thoracoplasty were recruited into this study. BH-MR sequences were used to obtain coronal images of the whole chest during full inspiration and expiration. The following measurements were assessed: (1) inspiratory, expiratory and change in lung volume; (2) change in anteroposterior (AP) and transverse (TS) diameter of the chest wall at two levels: carina and apex (3) change in diaphragmatic heights. The changes in parameters before and after operation were compared using Wilcoxon signed ranks test. Patients were also asked to score their breathing effort before and after operation using a scale of 1â9 with ascending order of effort. The degree of spinal surgical correction at three planes was also assessed by reformatted MR images and correction rate of Cobb's angle was calculated.</p> <p>Results</p> <p>The individual or total inspiratory and expiratory volume showed slight but insignificant increase after operation. There was significantly increase in bilateral TS chest wall movement at carina level and increase in bilateral diaphragmatic movements between inspiration and expiration. The AP chest wall movements, however, did not significantly change.</p> <p>The median breathing effort after operation was lower than that before operation (p < 0.05).</p> <p>There was significant reduction in coronal Cobb's angle after operation but the change in sagittal and axial angle at scoliosis apex was not significant.</p> <p>Conclusion</p> <p>There is improvement of lateral chest wall and diaphragmatic motions in AIS patients six months after posterior spinal fusion, associated with subjective symptomatic improvement. Lung volumes however, do not significantly change after operation. BH-MR is novel non-invasive method for long term post operative assessment of pulmonary function in AIS patients.</p
LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM
We study the phenomenology of a supersymmetric left-right model, assuming
minimal supergravity boundary conditions. Both left-right and (B-L) symmetries
are broken at an energy scale close to, but significantly below the GUT scale.
Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for
superpotential and soft parameters complete at 2-loop order. At low energies
lepton flavour violation (LFV) and small, but potentially measurable mass
splittings in the charged scalar lepton sector appear, due to the RGE running.
Different from the supersymmetric 'pure seesaw' models, both, LFV and slepton
mass splittings, occur not only in the left- but also in the right slepton
sector. Especially, ratios of LFV slepton decays, such as Br()/Br() are sensitive to the
ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts
a polarization asymmetry of the outgoing positrons in the decay , A ~ [0,1], which differs from the pure seesaw 'prediction' A=1$.
Observation of any of these signals allows to distinguish this model from any
of the three standard, pure (mSugra) seesaw setups.Comment: 43 pages, 17 figure
Recommended from our members
Unique local bone tissue characteristics in iliac crest bone biopsy from adolescent idiopathic scoliosis with severe spinal deformity
Adolescent idiopathic scoliosis is a complex disease with unclear etiopathogenesis. Systemic and persistent low bone mineral density is an independent prognostic factor for curve progression. The fundamental question of how bone quality is affected in AIS remains controversy because there is lack of site-matched control for detailed analysis on bone-related parameters. In this case-control study, trabecular bone biopsies from iliac crest were collected intra-operatively from 28 severe AIS patients and 10 matched controls with similar skeletal and sexual maturity, anthropometry and femoral neck BMD Z-score to control confounding effects. In addition to static histomorphometry, micro-computed tomography (ÎŒCT) and real time-PCR (qPCR) analyses, individual trabecula segmentation (ITS)-based analysis, finite element analysis (FEA), energy dispersive X-ray spectroscopy (EDX) were conducted to provide advanced analysis of structural, mechanical and mineralization features. ÎŒCT and histomorphometry showed consistently reduced trabecular number and connectivity. ITS revealed predominant change in trabecular rods, and EDX confirmed less mineralization. The structural and mineralization abnormality led to slight reduction in apparent modulus, which could be attributed to differential down-regulation of Runx2, and up-regulation of Spp1 and TRAP. In conclusion, this is the first comprehensive study providing direct evidence of undefined unique pathological changes at different bone hierarchical levels in AIS
- âŠ