29 research outputs found

    Biodiversity Conservation in the REDD

    Get PDF
    Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG) emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics

    Contrasting effects of defaunation on aboveground carbon storage across the global tropics

    Get PDF
    Defaunation is causing declines of large-seeded animal-dispersed trees in tropical forests worldwide, but whether and how these declines will affect carbon storage across this biome is unclear. Here we show, using a pan-tropical dataset, that simulated declines of large-seeded animal-dispersed trees have contrasting effects on aboveground carbon stocks across Earth’s tropical forests. In our simulations, African, Neotropical and South Asian forests which have high proportions of animal-dispersed species consistently show carbon losses (2-12%), but Southeast Asian and Australian forests where there are more abiotically-dispersed species show little to no carbon losses or marginal gains (±1%). These patterns result primarily from changes in wood volume, and are underlain by consistent relationships in our empirical data (~2100 species), wherein, large-seeded animal-dispersed species are larger as adults than small-seeded animal-dispersed species, but are smaller than abiotically-dispersed species. Thus, floristic differences and distinct dispersal mode-seed size-adult size combinations can drive contrasting regional responses to defaunation

    Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests

    Get PDF
    For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0-7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps

    Author Correction: Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edges

    Get PDF
    The original version of this Article contained an error in the third sentence of the abstract and incorrectly read "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass", rather than the correct "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) in above-ground live biomass carbon". This has now been corrected in both the PDF and HTML versions of the Article

    Author Correction: Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edges

    Get PDF
    The original version of this Article contained an error in the third sentence of the abstract and incorrectly read "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass", rather than the correct "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) in above-ground live biomass carbon". This has now been corrected in both the PDF and HTML versions of the Article

    An estimate of the number of tropical tree species

    No full text

    Phylogenetic classification of the world's tropical forests.

    No full text

    Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima.

    No full text
    The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent. We used species distribution models (SDMs) of 317 Dipterocarp species to estimate the geographic extent of appropriate climatic conditions for rainforest on Sundaland at the last glacial maximum (LGM). The SDMs suggest that the climate of central Sundaland at the LGM was suitable to sustain Dipterocarp rainforest, and that the presence of a previously suggested transequatorial savannah corridor at that time is unlikely. Our findings are supported by palynologic evidence, dynamic vegetation models, extant mammal and termite communities, vascular plant fatty acid stable isotopic compositions, and stable carbon isotopic compositions of cave guano profiles. Although Dipterocarp species richness was generally lower at the LGM, areas of high species richness were mostly found off the current islands and on the emergent Sunda Shelf, indicating substantial species migration and mixing during the transitions between the Quaternary glacial maxima and warm periods such as the present

    Venomous Snakes and Envenomation in Brunei

    No full text
    The venomous snakes recorded from Brunei Darussalam are enumerated. A total of 19 species, representing two families (Elapidae, 15 species, and Viperidae, four species), have been recorded in the country. For each species, there is a brief description of biology, localities, and references. Antivenom sera available at RIPAS Hospital are listed and annotated with their potential use. Apart from bites from venomous snakes, the presence of one “spitter,” the equatorial cobra, Naja sumatrana, increases the risk of humans to venom ophthalmia. Finally, future directions for research and management of snake envenomation, and for enhancing knowledge of the country’s snakes for conservation and improving health care, are discussed
    corecore