122 research outputs found

    Liposome-based drug delivery in breast cancer treatment

    Get PDF
    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

    Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer

    Get PDF
    SP1049C is a novel anticancer agent containing doxorubicin and two nonionic pluronic block copolymers. In preclinical studies, SP1049C demonstrated increased efficacy compared to doxorubicin. The objectives of this first phase I study were to determine the toxicity profile, dose-limiting toxicity, maximum tolerated dose and pharmacokinetic profile of SP1049C, and to document any antitumour activity. The starting dose was 5 mg m−2 (doxorubicin content) as an intravenous infusion once every 3 weeks for up to six cycles. A total of 26 patients received 78 courses at seven dose levels. The dose-limiting toxicity was myelosuppression and DLT was reached at 90 mg m−2. The maximum tolerated dose was 70 mg m−2 and is recommended for future trials. The pharmacokinetic profile of SP1049C showed a slower clearance than has been reported for conventional doxorubicin. Evidence of antitumour activity was seen in some patients with advanced resistant solid tumours. Phase II trials with this agent are now warranted to further define its antitumour activity and safety profile

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Over-Expression of a Cytochrome P450 Is Associated with Resistance to Pyriproxyfen in the Greenhouse Whitefly Trialeurodes vaporariorum

    Get PDF
    Copyright: 2012 Karatolos et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: The juvenile hormone mimic, pyriproxyfen is a suppressor of insect embryogenesis and development, and is effective at controlling pests such as the greenhouse whitefly Trialeurodes vaporariorum (Westwood) which are resistant to other chemical classes of insecticides. Although there are reports of insects evolving resistance to pyriproxyfen, the underlying resistance mechanism(s) are poorly understood. Results: Bioassays against eggs of a German (TV8) population of T. vaporariorum revealed a moderate level (21-fold) of resistance to pyriproxyfen. This is the first time that pyriproxyfen resistance has been confirmed in this species. Sequential selection of TV8 rapidly generated a strain (TV8pyrsel) displaying a much higher resistance ratio (>4000-fold). The enzyme inhibitor piperonyl butoxide (PBO) suppressed this increased resistance, indicating that it was primarily mediated via metabolic detoxification. Microarray analysis identified a number of significantly over-expressed genes in TV8pyrsel as candidates for a role in resistance including cytochrome-P450 dependent monooxygenases (P450s). Quantitative PCR highlighted a single P450 gene (CYP4G61) that was highly over-expressed (81.7-fold) in TV8pyrsel. Conclusion: Over-expression of a single cytochrome P450 gene (CYP4G61) has emerged as a strong candidate for causing the enhanced resistance phenotype. Further work is needed to confirm the role of the encoded P450 enzyme CYP4G61 in detoxifying pyriproxyfen.Peer reviewedFinal Published versio

    Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity

    Get PDF
    INTRODUCTION: The regulation of extracellular proteolytic activity via the plasminogen activation system is complex, involving numerous activators, inhibitors, and receptors. Previous studies on monocytic and colon cell lines suggest that plasmin pre-treatment can increase plasminogen binding, allowing the active enzyme to generate binding sites for its precursor. Other studies have shown the importance of pre-formed receptors such as annexin II heterotetramer. However, few studies have used techniques that exclusively characterise cell-surface events and these mechanisms have not been investigated at the breast cancer cell surface. METHODS: We have studied plasminogen binding to MCF-7 in which urokinase plasminogen activator receptor (uPAR) levels were upregulated by PMA (12-O-tetradecanoylphorbol-13-acetate) stimulation, allowing flexible and transient modulation of cell-surface uPA. Similar experiments were also performed using MDA-MB-231 cells, which overexpress uPAR/uPA endogenously. Using techniques that preserve cell integrity, we characterise the role of uPA as both a plasminogen receptor and activator and quantify the relative contribution of pre-formed and cryptic plasminogen receptors to plasminogen binding. RESULTS: Cell-surface plasminogen binding was significantly enhanced in the presence of elevated levels of uPA in an activity-dependent manner and was greatly attenuated in the presence of the plasmin inhibitor aprotinin. Pre-formed receptors were also found to contribute to increased plasminogen binding after PMA stimulation and to co-localise with uPA/uPAR and plasminogen. Nevertheless, a relatively modest increase in plasminogen-binding capacity coupled with an increase in uPA led to a dramatic increase in the proteolytic capacity of these cells. CONCLUSION: We show that the majority of lysine-dependent plasminogen binding to breast cancer cells is ultimately regulated by plasmin activity and is dependent on the presence of significant levels of active uPA. The existence of a proteolytic positive feedback loop in plasminogen activation has profound implications for the ability of breast cancer cells expressing high amounts of uPA to accumulate a large proteolytic capacity at the cell surface, thereby conferring invasive potential

    Method validation and preliminary qualification of pharmacodynamic biomarkers employed to evaluate the clinical efficacy of an antisense compound (AEG35156) targeted to the X-linked inhibitor of apoptosis protein XIAP

    Get PDF
    Data are presented on pharmacodynamic (PD) method validation and preliminary clinical qualification of three PD biomarker assays. M65 Elisa, which quantitates different forms of circulating cytokeratin 18 (CK18) as putative surrogate markers of both apoptotic and nonapoptotic tumour cell death, was shown to be highly reproducible: calibration curve linearity r2=0.996, mean accuracy >91% and mean precision <3%, n=27. Employing recombinant (r) CK18 and caspase cleaved CK18 (CK18 Asp396 neo-epitope) as external standards, kit to kit reproducibly was <6% (n=19). rCK18 was stable in plasma for 4 months at −20°C and −80°C, for 4 weeks at 4°C and had a half-life of 2.3 days at 37°C. Cytokeratin 18 Asp396 NE, the M30 Apoptosense Elisa assay antigen, was stable in plasma for 6 months at −20°C and −80°C, for 3 months at 4°C, while its half-life at 37°C was 3.8 days. Within-day variations in endogenous plasma concentrations of the M30 and M65 antigens were assessed in two predose blood samples collected from a cohort of 15 ovarian cancer patients receiving carboplatin chemotherapy and were shown to be no greater than the variability associated with methods themselves. Between-day fluctuations in circulating levels of the M30 and M65 antigens and in XIAP mRNA levels measured in peripheral blood mononuclear cells by quantitative (q) RT–PCR were evaluated in two predose blood samples collected with a 5- to 7-day gap from 23 patients with advanced cancer enrolled in a phase I trial. The mean variation between the two pretreatment values ranged from 13 to 14 to 25%, respectively, for M65, M30 and qRT–PCR. These data suggest that the M30 and M65 Elisa's and qRT–PCR as PD biomarker assays have favourable performance characteristics for further investigation in clinical trials of anticancer agents which induce tumour apoptosis/necrosis or knockdown of the anti-apoptotic protein XIAP

    Biomarkers of apoptosis

    Get PDF
    Within the era of molecularly targeted anticancer agents, it has become increasingly important to provide proof of mechanism as early on as possible in the drug development cycle, especially in the clinic. Selective activation of apoptosis is often cited as one of the major goals of cancer chemotherapy. Thus, the present minireview focuses on a discussion of the pros and cons of a variety of methodological approaches to detect different components of the apoptotic cascade as potential biomarkers of programmed cell death. The bulk of the discussion centres on serological assays utilising the technique of ELISA, since here there is an obvious advantage of sampling multiple time points. Potential biomarkers of apoptosis including circulating tumour cells, cytokeratins and DNA nucleosomes are discussed at length. However, accepting that a single biomarker may not have the power to predict proof of concept and patient outcome, it is clear that in the future more emphasis will be placed on technologies that can analyse panels of biomarkers in small volumes of samples. To this end the increased throughput afforded by multiplex ELISA technologies is discussed

    Gefitinib (ZD1839, Iressa™) as palliative treatment in recurrent or metastatic head and neck cancer

    Get PDF
    To assess the level of activity and toxicity of gefitinib (ZD1839, Iressa™) in a population of patients with locally recurrent and/or metastatic head and neck cancer. Patients were recruited into an expanded access programme through the multidisciplinary head and neck clinics at the Royal Marsden and St George's Hospitals. Patients were required to have received at least one course of standard systemic chemotherapy or radiation therapy, or be medically unfit for chemotherapy. Patients were commenced on single-agent gefitinib at a dose of 500 mg day−1. Clinical, symptomatic and radiological response, time to progression (TTP), survival and toxicity were recorded. A total of 47 patients were enrolled (35 male and 12 female) with a median age of 62 years (range 18–93 years). The observed clinical response rate was 8% with a disease control rate (complete response, partial response, stable disease) of 36%. In all, 34% of patients experienced an improvement in their symptoms. The median TTP and survival were 2.6 and 4.3 months, respectively. Acneiform folliculitis was the most frequent toxicity observed (76%) but the majority of cases were grade 1 or 2. Only four patients experienced grade 3 toxicity of any type (all cases of folliculitis). Gefitinib was well tolerated and yielded symptomatic improvement in one-third of patients. However, this agent appeared to possess limited antitumour activity in this group of patients with head and neck cancer in whom the objective response rate, median TTP and survival were all lower than has been reported in a previous study

    Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from <it>Atta laevigata</it>, one of the pest ants with broad geographic distribution in South America.</p> <p>Results</p> <p>The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in <it>Atta laevigata</it>. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity.</p> <p>Conclusion</p> <p>The generation and analysis of expressed sequence tags from <it>Atta laevigata </it>have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters.</p
    corecore