3,263 research outputs found
Mechanical Properties of End-crosslinked Entangled Polymer Networks using Sliplink Brownian Dynamics Simulations
The mechanical properties of a polymeric network containing both crosslinks
and sliplinks (entanglements) are studied using a multi-chain Brownian dynamics
simulation. We coarse-grain at the level of chain segments connecting
consecutive nodes (cross- or sliplinks), with particular attention to the
Gaussian statistics of the network. Affine displacement of nodes is not
imposed: their displacement as well as sliding of monomers through sliplinks is
governed by force balances. The simulation results of stress in uniaxial
extension and the full stress tensor in simple shear including the (non-zero)
second normal stress difference are presented for monodisperse chains with up
to 18 entanglements between two crosslinks. The cases of two different force
laws of the subchains (Gaussian chains and chains with finite extensibility)
for two different numbers of monomers in a subchain (no = 50 and no = 100) are
examined. It is shown that the additivity assumption of slip- and crosslink
contribution holds for sufficiently long chains with two or more entanglements,
and that it can be used to construct the strain response of a network of
infinitely long chains. An important consequence is that the contribution of
sliplinks to the small-strain shear modulus is about ⅔ of the
contribution of a crosslink
MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location
Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP) mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre) in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus). Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015), yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors. © 2014 Tirodkar et al
Cost-Effectiveness Findings from the Agewell Pilot Study of Behaviour Change to Promote Health and Wellbeing in Later Life.
Background: Participation in cognitive and physical activities may help to maintain health and wellbeing in older people. The Agewell study explored the feasibility of increasing cognitive and physical activity in older people through a goal-setting approach. This paper describes the findings of the cost-effectiveness analysis. Method: Individuals over the age of 50 and attending an Agewell centre in North Wales were randomised to one of three conditions: control (IC), goal-setting (GS), or goal-setting with mentoring (GM). We undertook a cost-effectiveness analysis comparing GS vs. IC, GM vs. IC and GM vs. GS. The primary outcome measure for this analysis was the QALY, calculated using the EQ-5D. Participants’ health and social care contacts were recorded and costed using national unit costs. Results: Seventy participants were followed-up at 12 months. Intervention set up and delivery costs were £252 per participant in the GS arm and £269 per participant in the GM arm. Mean health and social care costs over 12 months were £1,240 (s.d. £3,496) per participant in the IC arm, £1,259 (s.d. £3,826) per participant in the GS arm and £1,164 (s.d. £2,312) per participant in the GM arm. At a willingness to pay threshold of £20,000 per QALY there was a 65% probability that GS was cost-effective compared to IC (ICER of £1,070). However, there was only a 41% probability that GM was cost-effective compared to IC (ICER of £2,830) at a threshold of £20,000 per QALY. Conclusion: Setting up and running the community based intervention was feasible. Due to the small sample size it is not possible to draw a firm conclusion about cost-effectiveness; however, our preliminary results suggest that goal- setting is likely to be cost-effective compared to the control condition of no goal-setting, the addition of mentoring was effective but not cost-effective.Lifelong Health and Well-being Programme through the Medical Research Counci
Analysis of defect-related inhomogeneous electroluminescence in InGaN/GaN QW LEDs
The inhomogeneous electroluminescence (EL) of InGaN/GaN quantum well light emitting diode structures was investigated in this study. Electroluminescence hyperspectral images showed that inhomogeneities in the form of bright spots exhibited spectrally blue-shifted and broadened emission. Scanning electron microscopy combined with cathodoluminescence (SEM-CL) was used to identify hexagonal pits at the centre of approximately 20% of these features. Scanning transmission electron microscopy imaging with energy dispersive X-ray spectroscopy (STEM-EDX) indicated there may be p-doped AlGaN within the active region caused by the presence of the pit. Weak beam dark-field TEM (WBDF-TEM) revealed the presence of bundles of dislocations associated with the pit, suggesting the surface features which cause the inhomogeneous EL may occur at coalescence boundaries, supported by trends in the number of features observed across the wafer.The European Research Council has provided financial support under the European Community’s Seventh Framework Programme/ ERC grant agreement no. 279361 (MACONS).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.spmi.2016.03.03
Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network
In the paper we present a metabolic reconstruction and flux-balance analysis (FBA) of Plasmodium falciparum, the primary agent of malaria. The compartmentalized metabolic network of the parasite accounts for 1001 reactions and 616 metabolites. Enzyme–gene associations were established for 366 genes and 75% of all enzymatic reactions.The model was able to reproduce phenotypes of experimental gene knockout and drug inhibition assays with up to 90% accuracy. The model also can be used to efficiently integrate mRNA-expression data to improve the accuracy of metabolic predictions.Using FBA of the reconstructed metabolic network, we identified 40 enzymatic drug targets (i.e. in silico essential genes) with no or very low sequence identity to human proteins.We experimentally tested one of the identified drug targets, nicotinate mononucleotide adenylyltransferase, using a recently discovered small-molecule inhibitor
Cellular analysis of the action of epigenetics drugs and probes
Small molecule drugs and probes are important tools in drug discovery, pharmacology, and cell biology. This is of course also true for epigenetic inhibitors. Important examples for the use of established epigenetic inhibitors are the study of the mechanistic role of a certain target in a cellular setting or the modulation of a certain phenotype in an approach that aims towards therapeutic application. Alternatively, cellular testing may aim at the validation of a new epigenetic inhibitor in drug discovery approaches. Cellular and eventually animal models provide powerful tools for these different approaches but certain caveats have to be recognized and taken into account. This involves both the selectivity of the pharmacological tool as well as the specificity and the robustness of the cellular system. In this article, we present an overview of different methods that are used to profile and screen for epigenetic agents and comment on their limitations. We describe not only diverse successful case studies of screening approaches using different assay formats, but also some problematic cases, critically discussing selected applications of these systems
Compiling SHIM
Embedded systems demand concurrency for supporting simultaneous actions in their environment and parallel hardware. Although most concurrent programming formalisms are prone to races and non-determinism, some, such as our SHIM (software/hardware integration medium) language, avoid them by design. In particular, the behavior of SHIM programs is scheduling-independent, meaning the I/O behavior of a program is independent of scheduling policies, including the relative execution rates of concurrent processes. The SHIM project demonstrates how a scheduling-independent language simplifies the design, optimization, and verification of concurrent systems. Through examples and discussion, we describe the SHIM language and code generation techniques for both shared-memory and message-passing architectures, along with some verification algorithms
Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism
In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth
Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females
Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system
- …