1,899 research outputs found

    Morphology and hemodynamics in isolated common iliac artery aneurysms impacts proximal aortic remodeling

    Get PDF
    Objective- Isolated common iliac artery aneurysms (CIAA) are rare. Their prognosis and influence on aortoiliac blood flow and remodeling are unclear. We evaluated the hypotheses that morphology at and distal to the aortic bifurcation, together with the associated hemodynamic changes, influence both the natural history of CIAA and proximal aortic remodeling. Approach and Results- Twenty-five isolated CIAAs (15 intact, 10 ruptured), in 23 patients were reconstructed and analyzed with computational fluid dynamics: all showed abnormal flow. Then we studied a series of 24 hypothetical aortoiliac geometries in silico with varying abdominal aortic deflection and aortic bifurcation angles: key findings were assessed in an independent validation cohort of 162 patients. Wall shear stress in isolated unilateral CIAAs was lower than the contralateral common iliac artery, 0.38±0.33 Pa versus 0.61±0.24 Pa, inversely associated with CIAA diameter ( P<0.001) and morphology (high shear stress in variants distal to a sharp kink). Rupture usually occurred in regions of elevated low and oscillatory shear with a wide aortic bifurcation angle. Abdominal aortas deflected towards the CIAA for most unilateral isolated CIAAs (14/21). In silico, wider bifurcation angles created high focal regions of low and oscillatory shear in the common iliac artery. The associations of unilateral CIAA with aortic deflection and common iliac artery diameter with bifurcation angle were confirmed in the validation cohort. Conclusions- Decreasing wall shear stress is strongly associated with CIAA progression (larger aneurysms and rupture), whereas abnormal blood flow in the CIAA seems to promote proximal aortic remodeling, with adaptive lateral deflection of the abdominal aorta towards the aneurysmal side

    Disposition of Federally Owned Surpluses

    Get PDF
    PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    Transit Photometry as an Exoplanet Discovery Method

    Full text link
    Photometry with the transit method has arguably been the most successful exoplanet discovery method to date. A short overview about the rise of that method to its present status is given. The method's strength is the rich set of parameters that can be obtained from transiting planets, in particular in combination with radial velocity observations; the basic principles of these parameters are given. The method has however also drawbacks, which are the low probability that transits appear in randomly oriented planet systems, and the presence of astrophysical phenomena that may mimic transits and give rise to false detection positives. In the second part we outline the main factors that determine the design of transit surveys, such as the size of the survey sample, the temporal coverage, the detection precision, the sample brightness and the methods to extract transit events from observed light curves. Lastly, an overview over past, current and future transit surveys is given. For these surveys we indicate their basic instrument configuration and their planet catch, including the ranges of planet sizes and stellar magnitudes that were encountered. Current and future transit detection experiments concentrate primarily on bright or special targets, and we expect that the transit method remains a principal driver of exoplanet science, through new discoveries to be made and through the development of new generations of instruments.Comment: Review chapte

    The impact of open versus closed format ICU admission practices on the outcome of high risk surgical patients: a cohort analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the year 2000, the organizational structure of the ICU in the Zaandam Medical Centre (ZMC) changed from an open to a closed format ICU. The objective of this study was to evaluate the effect of this organizational change on outcome in high risk surgical patients.</p> <p>Methods</p> <p>The medical records of all consecutive high risk surgical patients admitted to the ICU from 1996 to 1998 (open format) and from 2003 to 2005 (closed format), were reviewed. High-risk patients were defined according to the Identification of Risk in Surgical patients (IRIS) score. Parameters studied were: mortality, morbidity, ICU length of stay (LOS) and hospital LOS.</p> <p>Results</p> <p>Mortality of ICU patients was 25.7% in the open format group and 15.8% in the closed format group (p = 0.01). Morbidity decreased from 48.6% to 46.1% (p = 0.6). The average length of hospital stay was 17 days in the open format group, and 21 days in the closed format group (p = 0.03).</p> <p>Conclusions</p> <p>High risk surgical patients in the ICU are patients that have undergone complex and often extensive surgery. These patients are in need of specialized treatment and careful monitoring for maximum safety and optimal care. Our results suggest that closed format is a more favourable setting than open format to minimize the effects of high risk surgery, and to warrant safe outcome in this patient group.</p

    Altered DNA methylation associated with a translocation linked to major mental illness

    Get PDF
    Recent work has highlighted a possible role for altered epigenetic modifications, including differential DNA methylation, in susceptibility to psychiatric illness. Here, we investigate blood-based DNA methylation in a large family where a balanced translocation between chromosomes 1 and 11 shows genome-wide significant linkage to psychiatric illness. Genome-wide DNA methylation was profiled in whole-blood-derived DNA from 41 individuals using the Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA). We found significant differences in DNA methylation when translocation carriers (n = 17) were compared to related non-carriers (n = 24) at 13 loci. All but one of the 13 significant differentially methylated positions (DMPs) mapped to the regions surrounding the translocation breakpoints. Methylation levels of five DMPs were associated with genotype at SNPs in linkage disequilibrium with the translocation. Two of the five genes harbouring significant DMPs, DISC1 and DUSP10, have been previously shown to be differentially methylated in schizophrenia. Gene Ontology analysis revealed enrichment for terms relating to neuronal function and neurodevelopment among the genes harbouring the most significant DMPs. Differentially methylated region (DMR) analysis highlighted a number of genes from the MHC region, which has been implicated in psychiatric illness previously through genetic studies. We show that inheritance of a translocation linked to major mental illness is associated with differential DNA methylation at loci implicated in neuronal development/function and in psychiatric illness. As genomic rearrangements are over-represented in individuals with psychiatric illness, such analyses may be valuable more widely in the study of these conditions

    Expression profiles of hydrophobic surfactant proteins in children with diffuse chronic lung disease

    Get PDF
    BACKGROUND: Abnormalities of the intracellular metabolism of the hydrophobic surfactant proteins SP-B and SP-C and their precursors may be causally linked to chronic childhood diffuse lung diseases. The profile of these proteins in the alveolar space is unknown in such subjects. METHODS: We analyzed bronchoalveolar lavage fluid by Western blotting for SP-B, SP-C and their proforms in children with pulmonary alveolar proteinosis (PAP, n = 15), children with no SP-B (n = 6), children with chronic respiratory distress of unknown cause (cRD, n = 7), in comparison to children without lung disease (n = 15) or chronic obstructive bronchitis (n = 19). RESULTS: Pro-SP-B of 25–26 kD was commonly abundant in all groups of subjects, suggesting that their presence is not of diagnostic value for processing defects. In contrast, pro-SP-B peptides cleaved off during intracellular processing of SP-B and smaller than 19–21 kD, were exclusively found in PAP and cRD. In 4 of 6 children with no SP-B, mutations of SFTPB or SPTPC genes were found. Pro-SP-C forms were identified at very low frequency. Their presence was clearly, but not exclusively associated with mutations of the SFTPB and SPTPC genes, impeding their usage as candidates for diagnostic screening. CONCLUSION: Immuno-analysis of the hydrophobic surfactant proteins and their precursor forms in bronchoalveolar lavage is minimally invasive and can give valuable clues for the involvement of processing abnormalities in pediatric pulmonary disorders

    Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties

    Get PDF
    The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse
    corecore