68 research outputs found

    Minimally invasive technologies for treatment of HTS and keloids : fractional laser

    Get PDF
    Hypertrophic fractional laser and keloid scars present a spectrum of disorders that are difficult to treat. Multiple treatments have been tried, to ameliorate the clinical sequelae of scarring, such as erythema, pruritus, functional limitation, reduced range of movement, dyschromias, hyper and/or hypopigmentation. Early international clinical recommendations on scar management first recognized the importance of laser therapy in this armamentarium [1]. Within the years that followed, laser technology and the understanding of how it modulates the underlying processes that leads to hypertrophic and keloid scarring have experienced a quantum leap [2] and are still evolving. Lasers also present a considerable financial commitent, and it is possible, in the authors’ experience, that limited early results partially stemmed from limited availability of multiple lasers with consequent attempts to overstretch the indications for what was available. This chapter presents a state-of-the-art insight into the use of fractional laser for the management of this complex problem. In particular, we focus on the management of complex scars such as those occurring post-burn injury and split-thickness skin grafting.peer-reviewe

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Current concept of abdominal sepsis : WSES position paper

    Get PDF
    Peer reviewe

    The Greenland and Antarctic ice sheets under 1.5◦C global warming

    Get PDF
    Even if anthropogenic warming were constrained to less than 2°C above pre-industrial, the Greenland and Antarctic ice sheets will continue to lose mass this century, with rates similar to those observed over the last decade. However, nonlinear responses cannot be excluded, which may lead to larger rates of mass loss. Furthermore, large uncertainties in future projections still remain, pertaining to knowledge gaps in atmospheric (Greenland) and oceanic (Antarctica) forcing. On millennial timescales, both ice sheets have tipping points at or slightly above the 1.5-2.0°C threshold; for Greenland, this may lead to irreversible mass loss due to the surface mass balance elevation feedback, while for Antarctica, this could result in a collapse of major drainage basins due to ice-shelf weakening

    Current concept of abdominal sepsis: WSES position paper

    Full text link
    corecore