421 research outputs found

    Determinants of prescribing potentially inappropriate medications in a nationwide cohort of community dwellers with dementia receiving a comprehensive geriatric assessment

    Get PDF
    Objective: To identify the prevalence and predictors of prescribing potentially inappropriate medications (PIMs) in a nationwide cohort of community dwellers with dementia requiring complex care needs. Methods: A cross-matched data of the International Resident Assessment Instrument-Home Care (9.1) (interRAI-HC) and prescribing data obtained from the Pharmaceutical Claims Data Mart (Pharms) extract files for older adults (≥65 y) requiring complex care needs were utilized for this study. The 2015 Beers criteria were applied to identify the prevalence of PIMs in older adults with dementia. Sociodemographic and clinical predictors of PIMs were analysed using a logistic regression model. Results: The study population consisted of 16 568 individuals who had their first interRAI assessment from 1 January 2015 to 31 December 2015. The estimated prevalence of dementia was 13.2% (2190/16 568). 66.9% (1465/2190) of the older adults diagnosed with dementia were prescribed PIMs, of which anticholinergic medications constituted 59.6% (873/1465). Males and individuals who were prescribed a greater number of medications were more likely to be prescribed PIMs. Individuals over 85 years of age, Māori ethnic group of individuals, older adults who were being supervised with respect to their activities of daily living, and individuals who reported good or excellent self-reported health had a lesser likelihood of being prescribed PIMs. Conclusion: We found that PIMs are prescribed frequently in older adults with dementia. Comprehensive geriatric assessments can serve as a potential tool to decrease the occurrence of PIMs in vulnerable groups with poor functional and cognitive status.</p

    Global parameter search reveals design principles of the mammalian circadian clock

    Get PDF
    Background: Virtually all living organisms have evolved a circadian (~24 hour) clock that controls physiological and behavioural processes with exquisite precision throughout the day/night cycle. The suprachiasmatic nucleus (SCN), which generates these ~24 h rhythms in mammals, consists of several thousand neurons. Each neuron contains a gene-regulatory network generating molecular oscillations, and the individual neuron oscillations are synchronised by intercellular coupling, presumably via neurotransmitters. Although this basic mechanism is currently accepted and has been recapitulated in mathematical models, several fundamental questions about the design principles of the SCN remain little understood. For example, a remarkable property of the SCN is that the phase of the SCN rhythm resets rapidly after a 'jet lag' type experiment, i.e. when the light/ dark (LD) cycle is abruptly advanced or delayed by several hours. Results: Here, we describe an extensive parameter optimization of a previously constructed simplified model of the SCN in order to further understand its design principles. By examining the top 50 solutions from the parameter optimization, we show that the neurotransmitters' role in generating the molecular circadian rhythms is extremely important. In addition, we show that when a neurotransmitter drives the rhythm of a system of coupled damped oscillators, it exhibits very robust synchronization and is much more easily entrained to light/dark cycles. We were also able to recreate in our simulations the fast rhythm resetting seen after a 'jet lag' type experiment. Conclusion: Our work shows that a careful exploration of parameter space for even an extremely simplified model of the mammalian clock can reveal unexpected behaviours and non-trivial predictions. Our results suggest that the neurotransmitter feedback loop plays a crucial role in the robustness and phase resetting properties of the mammalian clock, even at the single neuron level

    New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Get PDF
    A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL), are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs), chimeric antibody-T cell receptors (CARs) and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies

    30 days wild: development and evaluation of a large-scale nature engagement campaign to improve well-being

    Get PDF
    There is a need to increase people’s engagement with and connection to nature, both for human well-being and the conservation of nature itself. In order to suggest ways for people to engage with nature and create a wider social context to normalise nature engagement, The Wildlife Trusts developed a mass engagement campaign, 30 Days Wild. The campaign asked people to engage with nature every day for a month. 12,400 people signed up for 30 Days Wild via an online sign-up with an estimated 18,500 taking part overall, resulting in an estimated 300,000 engagements with nature by participants. Samples of those taking part were found to have sustained increases in happiness, health, connection to nature and pro-nature behaviours. With the improvement in health being predicted by the improvement in happiness, this relationship was mediated by the change in connection to nature

    Movements of Wolves at the Northern Extreme of the Species' Range, Including during Four Months of Darkness

    Get PDF
    Information about wolf (Canis lupus) movements anywhere near the northern extreme of the species' range in the High Arctic (>75°N latitude) are lacking. There, wolves prey primarily on muskoxen (Ovibos moschatus) and must survive 4 months of 24 hr/day winter darkness and temperatures reaching −53 C. The extent to which wolves remain active and prey on muskoxen during the dark period are unknown, for the closest area where information is available about winter wolf movements is >2,250 km south. We studied a pack of ≥20 wolves on Ellesmere Island, Nunavut, Canada (80°N latitude) from July 2009 through mid-April 2010 by collaring a lead wolf with a Global Positioning System (GPS)/Argos radio collar. The collar recorded the wolf's precise locations at 6:00 a.m. and 6:00 p.m. daily and transmitted the locations by satellite to our email. Straight-line distances between consecutive 12-hr locations varied between 0 and 76 km. Mean (SE) linear distance between consecutive locations (n = 554) was 11 (0.5) km. Total minimum distance traveled was 5,979 km, and total area covered was 6,640 km2, the largest wolf range reported. The wolf and presumably his pack once made a 263-km (straight-line distance) foray to the southeast during 19–28 January 2010, returning 29 January to 1 February at an average of 41 km/day straight-line distances between 12-hr locations. This study produced the first detailed movement information about any large mammal in the High Arctic, and the average movements during the dark period did not differ from those afterwards. Wolf movements during the dark period in the highest latitudes match those of the other seasons and generally those of wolves in lower latitudes, and, at least with the gross movements measurable by our methods, the 4-month period without direct sunlight produced little change in movements

    A Multi-Stage Model for Fundamental Functional Properties in Primary Visual Cortex

    Get PDF
    Many neurons in mammalian primary visual cortex have properties such as sharp tuning for contour orientation, strong selectivity for motion direction, and insensitivity to stimulus polarity, that are not shared with their sub-cortical counterparts. Successful models have been developed for a number of these properties but in one case, direction selectivity, there is no consensus about underlying mechanisms. We here define a model that accounts for many of the empirical observations concerning direction selectivity. The model describes a single column of cat primary visual cortex and comprises a series of processing stages. Each neuron in the first cortical stage receives input from a small number of on-centre and off-centre relay cells in the lateral geniculate nucleus. Consistent with recent physiological evidence, the off-centre inputs to cortex precede the on-centre inputs by a small (∼4 ms) interval, and it is this difference that confers direction selectivity on model neurons. We show that the resulting model successfully matches the following empirical data: the proportion of cells that are direction selective; tilted spatiotemporal receptive fields; phase advance in the response to a stationary contrast-reversing grating stepped across the receptive field. The model also accounts for several other fundamental properties. Receptive fields have elongated subregions, orientation selectivity is strong, and the distribution of orientation tuning bandwidth across neurons is similar to that seen in the laboratory. Finally, neurons in the first stage have properties corresponding to simple cells, and more complex-like cells emerge in later stages. The results therefore show that a simple feed-forward model can account for a number of the fundamental properties of primary visual cortex

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    A pipeline for high throughput detection and mapping of SNPs from EST databases

    Get PDF
    Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic variation that can be used as molecular markers. The SNPs that are hidden in sequence databases can be unlocked using bioinformatic tools. For efficient application of these SNPs, the sequence set should be error-free as much as possible, targeting single loci and suitable for the SNP scoring platform of choice. We have developed a pipeline to effectively mine SNPs from public EST databases with or without quality information using QualitySNP software, select reliable SNP and prepare the loci for analysis on the Illumina GoldenGate genotyping platform. The applicability of the pipeline was demonstrated using publicly available potato EST data, genotyping individuals from two diploid mapping populations and subsequently mapping the SNP markers (putative genes) in both populations. Over 7000 reliable SNPs were identified that met the criteria for genotyping on the GoldenGate platform. Of the 384 SNPs on the SNP array approximately 12% dropped out. For the two potato mapping populations 165 and 185 SNPs segregating SNP loci could be mapped on the respective genetic maps, illustrating the effectiveness of our pipeline for SNP selection and validation

    Invariant computations in local cortical networks with balanced excitation and inhibition

    Get PDF
    [Abstract] Cortical computations critically involve local neuronal circuits. The computations are often invariant across a cortical area yet are carried out by networks that can vary widely within an area according to its functional architecture. Here we demonstrate a mechanism by which orientation selectivity is computed invariantly in cat primary visual cortex across an orientation preference map that provides a wide diversity of local circuits. Visually evoked excitatory and inhibitory synaptic conductances are balanced exquisitely in cortical neurons and thus keep the spike response sharply tuned at all map locations. This functional balance derives from spatially isotropic local connectivity of both excitatory and inhibitory cells. Modeling results demonstrate that such covariation is a signature of recurrent rather than purely feed-forward processing and that the observed isotropic local circuit is sufficient to generate invariant spike tuning

    Outcomes of pediatric patients with therapy-related myeloid neoplasms

    Get PDF
    Long-term outcomes after allogeneic hematopoietic cell transplantation (HCT) for therapy-related myeloid neoplasms (tMNs) are dismal. There are few multicenter studies defining prognostic factors in pediatric patients with tMNs. We have accumulated the largest cohort of pediatric patients who have undergone HCT for a tMN to perform a multivariate analysis defining factors predictive of long-term survival. Sixty-eight percent of the 401 patients underwent HCT using a myeloablative conditioning (MAC) regimen, but there were no statistically significant differences in the overall survival (OS), event-free survival (EFS), or cumulative incidence of relapse and non-relapse mortality based on the conditioning intensity. Among the recipients of MAC regimens, 38.4% of deaths were from treatment-related causes, especially acute graft versus host disease (GVHD) and end-organ failure, as compared to only 20.9% of deaths in the reduced-intensity conditioning (RIC) cohort. Exposure to total body irradiation (TBI) during conditioning and experiencing grade III/IV acute GVHD was associated with worse OS. In addition, a diagnosis of therapy-related myelodysplastic syndrome and having a structurally complex karyotype at tMN diagnosis were associated with worse EFS. Reduced-toxicity (but not reduced-intensity) regimens might help to decrease relapse while limiting mortality associated with TBI-based HCT conditioning in pediatric patients with tMNs
    corecore