73 research outputs found

    Wideband-tuneable, nanotube mode-locked, fibre laser

    Get PDF
    Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1–3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4–6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3–1.5 mm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11–16. Here, we engineer a nanotube–polycarbonate film with a wide bandwidth (>300 nm) around 1.55 mm, and then use it to demonstrate a 2.4 ps Er31-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems

    Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two component systems (TCS) are signal transduction pathways which typically consist of a sensor histidine kinase (HK) and a response regulator (RR). In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in <it>Lactobacillaceae </it>and <it>Leuconostocaceae</it>, two families belonging to the group of lactic acid bacteria (LAB). LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest.</p> <p>Results</p> <p>The genomes of 19 strains belonging to 16 different species have been analyzed. The number of TCS encoded by the strains considered in this study varied between 4 in <it>Lactobacillus helveticus </it>and 17 in <it>Lactobacillus casei</it>. The OmpR/IIIA family was the most prevalent in <it>Lactobacillaceae </it>accounting for 71% of the TCS present in this group. The phylogenetic analysis shows that no new TCS of this family has recently evolved in these <it>Lactobacillaceae </it>by either lineage-specific gene expansion or domain shuffling. Furthermore, no clear evidence of non-orthologous replacements of either RR or HK partners has been obtained, thus indicating that coevolution of cognate RR and HKs has been prevalent in <it>Lactobacillaceae</it>.</p> <p>Conclusions</p> <p>The results obtained suggest that vertical inheritance of TCS present in the last common ancestor and lineage-specific gene losses appear as the main evolutionary forces involved in their evolution in <it>Lactobacillaceae</it>, although some HGT events cannot be ruled out. This would agree with the genomic analyses of <it>Lactobacillales </it>which show that gene losses have been a major trend in the evolution of this group.</p

    Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    Get PDF
    Parity-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system’s orbital momentum axis. We investigate a three-particle azimuthal correlator which is a P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at √sNN=200  GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation

    (Invited) Influence of Vibrations on the Emission Properties of Single Graphene Quantum Dots

    No full text
    International audienceRecent years have shown an increasing number of studies dedicated to new light emitters for diverse applications such as optoelectronics, bio-imaging, and quantum technologies. In this context, graphene quantum dots (GQD) have important assets since bottom-up chemistry allows complete control of the structure, opening the way to wide customization of their electronic, optical, and spin properties [1-3]. The full benefit from these opportunities requires addressing GQD’s intrinsic photophysical properties.To do so, single molecule photoluminescence experiment is a powerfull tool [4]. Here, we highlight the influence of vibrations on GQDs’ optical properties, by comparing optical studies to extensive DFT/TDDFT calculations combined with molecular dynamics simulations. Specifically, we discussed their role in the transitions' oscillator strengths [5]. In order to get deeper in the photophysics of GQD, we investigate the spectroscopy of single GQDs at cryogenic temperatures. In particular, we show a narrowing of the emission lines at low temperature, that allows us to characterize and identify vibrational replicas that are characteristic to GQDs [6]. [1] M. G. Debije, J. Am. Chem. Soc . 2004, 126, 4641 [2] X. Yan, X. Cui, and L.-s. Li, J. Am. Chem. Soc . 2010 132, 5944 [3] A. Konishi et al , J. Am. Chem. Soc. 2010, 132, 11021 [4] S. Zhao et al , Nature Communications , 2018 , 9, 3470 [5] T. Liu et al , under review [6] T. Liu et al , in preparatio

    Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy

    No full text
    As interest in the potential biomedical applications of carbon nanotubes increases(1), there is a need for methods that can image nanotubes in live cells, tissues and animals. Although techniques such as Raman(2-4), photoacoustic(5) and near-infrared photoluminescence imaging(6-10) have been used to visualize nanotubes in biological environments, these techniques are limited because nanotubes provide only weak photoluminescence and low Raman scattering and it remains difficult to image both semiconducting and metallic nanotubes at the same time. Here, we show that transient absorption microscopy offers a label-free method to image both semiconducting and metallic single-walled carbon nanotubes in vitro and in vivo, in real time, with submicrometre resolution. By using appropriate near-infrared excitation wavelengths, we detect strong transient absorption signals with opposite phases from semiconducting and metallic nanotubes. Our method separates background signals generated by red blood cells and this allows us to follow the movement of both types of nanotubes inside cells and in the blood circulation and organs of mice without any significant damaging effects

    Administration of Bifidobacterium breve Decreases the Production of TNF-α in Children with Celiac Disease

    No full text
    Background Increasing evidence suggests that not only genetics, but also environmental factors like gut microbiota dysbiosis play an important role in the pathogenesis of celiac disease (CD). Aim The aim of our study was to investigate the effect of two probiotic strains Bifidobacterium breve BR03 and B. breve B632 on serum production of anti-inflammatory cytokine interleukin 10 (IL-10) and pro-inflammatory cytokine tumor necrosis factor alpha (TNF-a) in children with CD. Methods The study was a double-blinded, placebo-controlled trial that included 49 children with CD on glutenfree diet (GFD) randomized into two groups and 18 healthy children in the control group. The first group (24 children with CD) daily received B. breve BR03 and B632 (2 9 109 colony-forming units) and the second group (25 children with CD) received placebo for 3 months. Results TNF-a levels were significantly decreased in the first group after receiving B. breve for 3 months. On follow-up, 3 months after receiving probiotics, TNF-a levels increased again. Children with CD who were on GFD for less than 1 year showed similar baseline TNF-a levels as children who were on GFD for more than 1 year. IL-10 levels were in all groups of patients below detection level. Conclusions Probiotic intervention with B. breve strains has shown a positive effect on decreasing the production of pro-inflammatory cytokine TNF-a in children with CD on GFD
    corecore