59 research outputs found

    DOR/Tp53inp2 and Tp53inp1 Constitute a Metazoan Gene Family Encoding Dual Regulators of Autophagy and Transcription

    Get PDF
    Human DOR/TP53INP2 displays a unique bifunctional role as a modulator of autophagy and gene transcription. However, the domains or regions of DOR that participate in those functions have not been identified. Here we have performed structure/function analyses of DOR guided by identification of conserved regions in the DOR gene family by phylogenetic reconstructions. We show that DOR is present in metazoan species. Invertebrates harbor only one gene, DOR/Tp53inp2, and in the common ancestor of vertebrates Tp53inp1 may have arisen by gene duplication. In keeping with these data, we show that human TP53INP1 regulates autophagy and that different DOR/TP53INP2 and TP53INP1 proteins display transcriptional activity. The use of molecular evolutionary information has been instrumental to determine the regions that participate in DOR functions. DOR and TP53INP1 proteins share two highly conserved regions (region 1, aa residues 28–42; region 2, 66–112 in human DOR). Mutation of conserved hydrophobic residues in region 1 of DOR (that are part of a nuclear export signal, NES) reduces transcriptional activity, and blocks nuclear exit and autophagic activity under autophagy-activated conditions. We also identify a functional and conserved LC3-interacting motif (LIR) in region 1 of DOR and TP53INP1 proteins. Mutation of conserved acidic residues in region 2 of DOR reduces transcriptional activity, impairs nuclear exit in response to autophagy activation, and disrupts autophagy. Taken together, our data reveal DOR and TP53INP1 as dual regulators of transcription and autophagy, and identify two conserved regions in the DOR family that concentrate multiple functions crucial for autophagy and transcription

    Corneal Transduction by Intra-Stromal Injection of AAV Vectors In Vivo in the Mouse and Ex Vivo in Human Explants

    Get PDF
    The cornea is a transparent, avascular tissue that acts as the major refractive surface of the eye. Corneal transparency, assured by the inner stroma, is vital for this role. Disruption in stromal transparency can occur in some inherited or acquired diseases. As a consequence, light entering the eye is blocked or distorted, leading to decreased visual acuity. Possible treatment for restoring transparency could be via viral-based gene therapy. The stroma is particularly amenable to this strategy due to its immunoprivileged nature and low turnover rate. We assayed the potential of AAV vectors to transduce keratocytes following intra-stromal injection in vivo in the mouse cornea and ex vivo in human explants. In murine and human corneas, we transduced the entire stroma using a single injection, preferentially targeted keratocytes and achieved long-term gene transfer (up to 17 months in vivo in mice). Of the serotypes tested, AAV2/8 was the most promising for gene transfer in both mouse and man. Furthermore, transgene expression could be transiently increased following aggression to the cornea

    Healthy dietary indices and risk of depressive outcomes : a systematic review and meta-analysis of observational studies

    Get PDF
    With depression being the psychiatric disorder incurring the largest societal costs in developed countries, there is a need to gather evidence on the role of nutrition in depression, to help develop recommendations and guide future psychiatric health care. The aim of this systematic review was to synthesize the link between diet quality, measured using a range of predefined indices, and depressive outcomes. Medline, Embase and PsychInfo were searched up to 31st May 2018 for studies that examined adherence to a healthy diet in relation to depressive symptoms or clinical depression. Where possible, estimates were pooled using random effect meta-analysis with stratification by observational study design and dietary score. A total of 20 longitudinal and 21 cross-sectional studies were included. These studies utilized an array of dietary measures, including: different measures of adherence to the Mediterranean diet, the Healthy Eating Index (HEI) and Alternative HEI (AHEI), the Dietary Approaches to Stop Hypertension, and the Dietary Inflammatory Index. The most compelling evidence was found for the Mediterranean diet and incident depression, with a combined relative risk estimate of highest vs. lowest adherence category from four longitudinal studies of 0.67 (95% CI 0.55-0.82). A lower Dietary Inflammatory Index was also associated with lower depression incidence in four longitudinal studies (relative risk 0.76; 95% CI: 0.63-0.92). There were fewer longitudinal studies using other indices, but they and cross-sectional evidence also suggest an inverse association between healthy diet and depression (e.g., relative risk 0.65; 95% CI 0.50-0.84 for HEI/AHEI). To conclude, adhering to a healthy diet, in particular a traditional Mediterranean diet, or avoiding a pro-inflammatory diet appears to confer some protection against depression in observational studies. This provides a reasonable evidence base to assess the role of dietary interventions to prevent depression.Peer reviewe

    Native human adipose stromal cells: localization, morphology and phenotype

    Get PDF
    International audienceObjectives:Beside having roles in energy homeostasis and endocrine modulation, adipose tissue (AT) is now considered a promising source of mesenchymal stromal cells (adipose-derived stromal cells or ASCs) for regenerative medicine. Despite numerous studies on cultured ASCs, native human ASCs are rarely investigated. Indeed, the phenotype of ASCs in their native state, their localization within AT and comparison with bone marrow-derived mesenchymal stromal cells (BM-MSCs) has been poorly investigated.Design:To address these issues, the stroma vascular fraction (SVF) of human AT was extracted and native cell subtypes were isolated by immunoselection to study their clonogenic potential in culture. Immunohistology on samples of human AT in combination with reconstruction of confocal sections were performed in order to localize ASCs.Results:Compared with BM-MNCs, all native ASCs were found in the CD34(+) cell fraction of the AT-SVF. Native ASCs expressed classical mesenchymal markers described for BM-MSCs. Interestingly, CD34 expression decreased during ASC cell culture and was negatively correlated with cell proliferation rate. Immunohistological analysis revealed that native ASCs exhibited specific morphological features with protrusions. They were found scattered in AT stroma and did not express in vivo pericytic markers such as NG2, CD140b or alpha-smooth muscle actin, which appeared during the culture process. Finally, ASCs spontaneous commitment to adipocytic lineage was enhanced in AT from obese humans.Conclusions:The use of complementary methodological approaches to study native human ASCs revealed their immunophenotype, their specific morphology, their location within AT and their stemness. Furthermore, our data strongly suggest that human ASCs participate in adipogenesis during AT development.International Journal of Obesity advance online publication, 25 January 2011; doi:10.1038/ijo.2010.269

    Biology of urothelial tumorigenesis: insights from genetically engineered mice

    Get PDF
    Urothelium, one of the slowest cycling epithelia in the body, embodies a unique biological context for cellular transformation. Introduction of oncogenes into or removing tumor suppressor genes from the urothelial cells or a combination of both using the transgenic and/or knockout mouse approaches has provided useful insights into the molecular mechanisms of urothelial transformation and tumorigenesis. It is becoming increasingly clear that over-activation of the receptor tyrosine kinase (RTK) pathway, as exemplified by the constitutively activated Ha-ras oncogene, is both necessary and sufficient to initiate the low-grade, non-invasive urothelial carcinomas. Dosage of the mutated Ha-ras, but not concurrent inactivation of pro-senescence molecules p16Ink4a and p19Arf, dictates whether and when the low-grade urothelial carcinomas arise. Inactivation of both p53 and pRb, a prevailing paradigm previously proposed for muscle-invasive urothelial tumorigenesis, is found to be necessary but insufficient to initiate this urothelial carcinoma variant. Instead, downregulation in p53/pRb co-deficient urothelial cells of p107, a pRb family member, is associated with the genesis of the muscle-invasive bladder cancers. p53 deficiency also seems to be capable of cooperating with that of PTEN in eliciting invasive urothelial carcinomas. The genetically engineered mice have improved the molecular definition of the divergent pathways of urothelial tumorigenesis and progression, helped delineate the intricate crosstalk among different genetic alterations within a urothelium-specific context, identified new prognostic markers and novel therapeutic targets potentially applicable for clinical intervention, and provided in vivo platforms for testing preventive strategies of bladder cancer

    Regulation of zebrafish hatching by tetraspanin cd63

    Get PDF
    Tetraspanins cause the clustering of membrane proteins into a level of organisation essential for cellular function. Given the importance and complicated nature of this mechanism, we attempted a novel approach to identify the function of a single component in a biologically relevant context. A morpholino knockdown strategy was used to investigate the role of cd63, a membrane protein associated with intracellular transport and a melanoma marker, in embryonic zebrafish. By using three separate morpholinos targeting cd63, we were able to identify a specific phenotype. Strikingly, morphant fish failed to hatch due to the lack of secreted proteolytic enzymes required for chorion-softening. The morphology of the hatching gland at both the cellular and intracellular levels was disorganised, suggesting a role for cd63 in the functioning of this organ. This work identifies a specific role for cd63 in the zebrafish embryo and provides evidence for the suitability of zebrafish as a model system for the investigation of tetraspanin enriched microdomains
    corecore