298 research outputs found

    Inspiratory flow-resistive breathing, respiratory muscle-induced systemic oxidative stress, and diaphragm fatigue in healthy humans

    Get PDF
    We questioned whether the respiratory muscles of humans contribute to systemic oxidative stress following inspiratory flow-resistive breathing, whether the amount of oxidative stress is influenced by the level of resistive load, and whether the amount of oxidative stress is related to the degree of diaphragm fatigue incurred. Eight young and healthy participants attended the laboratory for four visits on separate days. During the first visit, height, body mass, lung function, and maximal inspiratory mouth and transdiaphragmatic pressure (Pdimax) were assessed. During visits 2–4, participants undertook inspiratory flow-resistive breathing with either no resistance (control) or resistive loads equivalent to 50 and 70% of their Pdimax (Pdimax50% and Pdimax70%) for 30 min. Participants undertook one resistive load per visit, and the order in which they undertook the loads was randomized. Inspiratory muscle pressures were higher (P < 0.05) during the 5th and Final min of Pdimax50% and Pdimax70% compared with control. Plasma F2-isoprostanes increased (P < 0.05) following inspiratory flow-resistive breathing at Pdimax70%. There were no increases in plasma protein carbonyls or total antioxidant capacity. Furthermore, although we evidenced small reductions in transdiapragmaic twitch pressures (PdiTW) after inspiratory flow-resistive breathing at Pdimax50% and Pdimax70%, this was not related to the increase in plasma F2-isoprostanes. Our novel data suggest that it is only when sufficiently strenuous that inspiratory flow-resistive breathing in humans elicits systemic oxidative stress evidenced by elevated plasma F2-isoprostanes, and based on our data, this is not related to a reduction in PdiTW

    Nonnegative principal component analysis for mass spectral serum profiles and biomarker discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As a novel cancer diagnostic paradigm, mass spectroscopic serum proteomic pattern diagnostics was reported superior to the conventional serologic cancer biomarkers. However, its clinical use is not fully validated yet. An important factor to prevent this young technology to become a mainstream cancer diagnostic paradigm is that robustly identifying cancer molecular patterns from high-dimensional protein expression data is still a challenge in machine learning and oncology research. As a well-established dimension reduction technique, PCA is widely integrated in pattern recognition analysis to discover cancer molecular patterns. However, its global feature selection mechanism prevents it from capturing local features. This may lead to difficulty in achieving high-performance proteomic pattern discovery, because only features interpreting global data behavior are used to train a learning machine.</p> <p>Methods</p> <p>In this study, we develop a nonnegative principal component analysis algorithm and present a nonnegative principal component analysis based support vector machine algorithm with sparse coding to conduct a high-performance proteomic pattern classification. Moreover, we also propose a nonnegative principal component analysis based filter-wrapper biomarker capturing algorithm for mass spectral serum profiles.</p> <p>Results</p> <p>We demonstrate the superiority of the proposed algorithm by comparison with six peer algorithms on four benchmark datasets. Moreover, we illustrate that nonnegative principal component analysis can be effectively used to capture meaningful biomarkers.</p> <p>Conclusion</p> <p>Our analysis suggests that nonnegative principal component analysis effectively conduct local feature selection for mass spectral profiles and contribute to improving sensitivities and specificities in the following classification, and meaningful biomarker discovery.</p

    RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest.</p> <p>Results</p> <p>In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape.</p> <p>Conclusion</p> <p>The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.</p

    Prognostic Biomarkers for Esophageal Adenocarcinoma Identified by Analysis of Tumor Transcriptome

    Get PDF
    Despite many attempts to establish pre-treatment prognostic markers to understand the clinical biology of esophageal adenocarcinoma (EAC), validated clinical biomarkers or parameters remain elusive. We generated and analyzed tumor transcriptome to develop a practical biomarker prognostic signature in EAC.Untreated esophageal endoscopic biopsy specimens were obtained from 64 patients undergoing surgery and chemoradiation. Using DNA microarray technology, genome-wide gene expression profiling was performed on 75 untreated cancer specimens from 64 EAC patients. By applying various statistical and informatical methods to gene expression data, we discovered distinct subgroups of EAC with differences in overall gene expression patterns and identified potential biomarkers significantly associated with prognosis. The candidate marker genes were further explored in formalin-fixed, paraffin-embedded tissues from an independent cohort (52 patients) using quantitative RT-PCR to measure gene expression. We identified two genes whose expression was associated with overall survival in 52 EAC patients and the combined 2-gene expression signature was independently associated with poor outcome (P<0.024) in the multivariate Cox hazard regression analysis.Our findings suggest that the molecular gene expression signatures are associated with prognosis of EAC patients and can be assessed prior to any therapy. This signature could provide important improvement for the management of EAC patients

    Reference Intervals for Brachial Artery Flow-Mediated Dilation and the Relation With Cardiovascular Risk Factors.

    Get PDF
    Endothelial function, assessed using brachial artery flow-mediated dilation (FMD), predicts future cardiovascular disease (CVD) risk. This study established age- and sex-specific reference intervals for brachial artery FMD in healthy individuals and examined the relation with CVD risk factors. In a retrospective study design, we pooled brachial artery FMD (acquired according to expert-consensus guidelines for FMD protocol and analysis) and participant characteristics/medical history from 5362 individuals (4-84 years; 2076 females). Healthy individuals (n=1403 [582 females]) were used to generate age-/sex-specific percentile curves. Subsequently, we included individuals with CVD risk factors, without overt disease (unmedicated n=3167 [1247 females] and medicated n=792 [247 females]). Multiple linear regression tested the relation of CVD risk factors (body mass index, blood pressure, cholesterol, diabetes, dyslipidemia, and smoking) with FMD. Healthy males showed a negative, curvilinear relation between FMD and age, while females revealed a negative linear relation that started higher but declined at a faster rate than males. Age- and sex-specific differences in FMD relate, at least partly, to baseline artery diameter. FMD was related to CVD risk factors in unmedicated (eg, systolic/diastolic blood pressure) and medicated individuals (eg, diabetes/dyslipidemia). Sex mediated some of these effects (P<0.05), with normalization of FMD in medicated men, but not women with dyslipidemia. In conclusion, sex alters the age-related decline in FMD, which may partly be explained through differences in baseline diameter. Sex also alters the influence of some CVD risk factors and medication on FMD. This work improves interpretation and future use of the FMD technique

    Effect of carbohydrate-protein supplement timing on acute exercise-induced muscle damage

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To determine if timing of a supplement would have an effect on muscle damage, function and soreness.</p> <p>Methods</p> <p>Twenty-seven untrained men (21 ± 3 yrs) were given a supplement before or after exercise. Subjects were randomly assigned to a pre exercise (n = 9), received carbohydrate/protein drink before exercise and placebo after, a post exercise (n = 9), received placebo before exercise and carbohydrate/protein drink after, or a control group (n = 9), received placebo before and after exercise. Subjects performed 50 eccentric quadriceps contractions on an isokinetic dynamometer. Tests for creatine kinase (CK), maximal voluntary contraction (MVC) and muscle soreness were recorded before exercise and at six, 24, 48, 72, and 96 h post exercise. Repeated measures ANOVA were used to analyze data.</p> <p>Results</p> <p>There were no group by time interactions however, CK significantly increased for all groups when compared to pre exercise (101 ± 43 U/L) reaching a peak at 48 h (661 ± 1178 U/L). MVC was significantly reduced at 24 h by 31.4 ± 14.0%. Muscle soreness was also significantly increased from pre exercise peaking at 48 h.</p> <p>Conclusion</p> <p>Eccentric exercise caused significant muscle damage, loss of strength, and soreness; however timing of ingestion of carbohydrate/protein supplement had no effect.</p

    Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer

    Get PDF
    BACKGROUND: FOXM1 regulates expression of cell cycle related genes that are essential for progression into DNA replication and mitosis. Consistent with its role in proliferation, elevated expression of FOXM1 has been reported in a variety of human tumour entities. FOXM1 is a gene of interest because recently chemical inhibitors of FOXM1 were described to limit proliferation and induce apoptosis in cancer cells in vitro, indicating that FOXM1 inhibitors could represent useful anticancer therapeutics. METHODS: Using immunohistochemistry (IHC) we systematically analysed FOXM1 expression in human invasive breast carcinomas (n = 204) and normal breast tissues (n = 46) on a tissue microarray. Additionally, using semiquantitative realtime PCR, a collection of paraffin embedded normal (n = 12) and cancerous (n = 25) breast tissue specimens as well as benign (n = 3) and malignant mammary cell lines (n = 8) were investigated for FOXM1 expression. SPSS version 14.0 was used for statistical analysis. RESULTS: FOXM1 was found to be overexpressed in breast cancer in comparison to normal breast tissue both on the RNA and protein level (e.g. 8.7 fold as measured by realtime PCR). We found a significant correlation between FOXM1 expression and the HER2 status determined by HER2 immunohistochemistry (P < 0.05). Univariate survival analysis showed a tendency between FOXM1 protein expression and unfavourable prognosis (P = 0.110). CONCLUSION: FOXM1 may represent a novel breast tumour marker with prognostic significance that could be included into multi-marker panels for breast cancer. Interestingly, we found a positive correlation between FOXM1 expression and HER2 status, pointing to a potential role of FOXM1 as a new drug target in HER2 resistant breast tumour, as FOXM1 inhibitors for cancer treatment were described recently. Further studies are underway to analyse the potential interaction between FOXM1 and HER2, especially whether FOXM1 directly activates the HER2 promoter

    Dental erosive wear and salivary flow rate in physically active young adults

    Get PDF
    Background Little attention has been directed towards identifying the relationship between physical exercise, dental erosive wear and salivary secretion. The study aimed i) to describe the prevalence and severity of dental erosive wear among a group of physically active young adults, ii) to describe the patterns of dietary consumption and lifestyle among these individuals and iii) to study possible effect of exercise on salivary flow rate. Methods Young members (age range 18-32 years) of a fitness-centre were invited to participate in the study. Inclusion criteria were healthy young adults training hard at least twice a week. A non-exercising comparison group was selected from an ongoing study among 18-year-olds. Two hundred and twenty participants accepted an intraoral examination and completed a questionnaire. Seventy of the exercising participants provided saliva samples. The examination was performed at the fitness-centre or at a dental clinic (comparison group), using tested erosive wear system (VEDE). Saliva sampling (unstimulated and stimulated) was performed before and after exercise. Occlusal surfaces of the first molars in both jaws and the labial and palatal surfaces of the upper incisors and canines were selected as index teeth. Results Dental erosive wear was registered in 64% of the exercising participants, more often in the older age group, and in 20% of the comparison group. Enamel lesions were most observed in the upper central incisors (33%); dentine lesions in lower first molar (27%). One fourth of the participants had erosive wear into dentine, significantly more in males than in females (p = 0.047). More participants with erosive wear had decreased salivary flow during exercise compared with the non-erosion group (p < 0.01). The stimulated salivary flow rate was in the lower rage (≤ 1 ml/min) among more than one third of the participants, and more erosive lesions were registered than in subjects with higher flow rates (p < 0.01). Conclusion The study showed that a high proportion of physically active young adults have erosive lesions and indicate that hard exercise and decreased stimulated salivary flow rate may be associated with such wear
    corecore