254 research outputs found

    Carbohydrate and caffeine improves high intensity running of elite rugby league interchange players during simulated match play.

    Get PDF
    The study examined the effects of carbohydrate and caffeine ingestion on simulated rugby league interchange performance. Eight male elite rugby league forwards completed two trials of a rugby league simulation protocol for interchange players seven days apart in a randomized crossover design, ingesting either carbohydrate (CHO; 40 g·h-1) or carbohydrate and caffeine (CHO-C) (40 g·h-1 + 3 mg·kg-1) drink. Movement characteristics, heart rate, ratings of perceived exertion (RPE), and countermovement jump height (CMJ) were measured during the protocol. CHO-C resulted in likely to very likely higher mean running speeds (ES 0.43 to 0.75), distance in high intensity running (ES 0.41 to 0.64) and mean sprint speeds (ES 0.39 to 1.04) compared to CHO. Heart rate was possibly to very likely higher (ES 0.32 to 0.74) and RPE was likely to very likely lower (ES -0.53 to 0.86) with CHO-C. There was a likely trivial to possibly higher CMJ in CHO-C compared to CHO (ES 0.07 to 0.25). The co-ingestion of carbohydrate with caffeine has an ergogenic effect to reduce the sense of effort and increase high intensity running capability that might be employed to enhance interchange running performance in elite rugby league players

    Acute fuelling and recovery practices of academy soccer players: implications for growth, maturation, and physical performance

    Get PDF
    Academy soccer players frequently train in the evening (i.e. 1700-2000 h), hence limited time to nutritionally prepare and recover due to schooling, travel and sleep schedules. Accordingly, we assessed timing and quantity of energy intake in the pre-training and post-training period. Over a 3-day in-season training period, male players (n=48; n=8 from under (U) 12, 13, 14, 15/16, 18 and 23 players) from an English Premier League academy self-reported dietary intake and physical activity levels (via the remote food photography method and activity diary, respectively) in the four hours pre- and post-training. Timing of pre-training energy intake ranged from 40 ± 28 mins (U15/U16 players) to 114 ± 71 mins (U18) before training and mean carbohydrate (CHO) intake ranged from 0.8±0.4 g.kg-1 (U23) to 1.5±0.9 g.kg-1 (U12). Timing of post-training energy intake ranged from 39 ± 27 mins (U14) to 70 ± 84 mins (U23) and mean CHO intake ranged from 1.6±0.8 g.kg-1 (U12) to 0.9±0.5 g.kg-1 (U14). In contrast to CHO, all age groups consumed sufficient protein intake in the post-training period (i.e. > 0.3 g.kg-1). We conclude academy soccer players habitually practice sub-optimal fuelling and recovery strategies, the consequence of which could impair growth, maturation and physical performance

    Daily energy requirements of male academy soccer players are greater than age-matched non-academy soccer players: A doubly labelled water investigation

    Get PDF
    This study aimed to test the hypothesis that the total daily energy expenditure (TDEE) of male academy soccer players is greater than players not enrolled on a formalised academy programme. English Premier League academy (ACAD: n = 8, 13 years, 50 ± 6 kg, 88 ± 3% predicted adult stature, PAS) and non-academy players (NON-ACAD: n = 6, 13 years, 53 ± 12 kg, 89 ± 3% PAS) were assessed for TDEE (via doubly labelled water) during a 14-day in-season period. External loading was evaluated during training (ACAD: 8 sessions, NON-ACAD: 2 sessions) and games (2 games for both ACAD and NON-ACAD) via GPS, and daily physical activity was evaluated using triaxial accelerometry. Accumulative duration of soccer activity (ACAD: 975 ± 23 min, NON-ACAD: 397 ± 2 min; p < 0.01), distance covered (ACAD: 54.2 ± 8.3 km, NON-ACAD: 21.6 ± 4.7 km; p < 0.05) and time engaged in daily moderate-to-vigorous (ACAD: 124 ± 17 min, NON-ACAD: 79 ± 18 min; p < 0.01) activity was greater in academy players. Academy players displayed greater absolute (ACAD: 3380 ± 517 kcal · d−1, NON-ACAD: 2641 ± 308 kcal · d−1; p < 0.05) and relative TDEE (ACAD: 66 ± 6 kcal · kg · d−1, NON-ACAD: 52 ± 10 kcal · kg · d−1; p < 0.05) versus non-academy players. Given the injury risk associated with high training volumes during growth and maturation, data demonstrate the requirement for academy players to consume sufficient energy (and carbohydrate) intake to support the enhanced energy cost of academy programmes

    Multi-detector row computed tomography (MDCT) and magnetic resonance imaging (MRI) in the evaluation of the mandibular invasion by squamous cell carcinomas (SCC) of the oral cavity. Correlation with pathological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To retrospectively compare the diagnostic accuracy of magnetic resonance imaging (MRI) and multidetector-row computed tomography (MDCT) in the assessment of the mandibular invasion by squamous cell carcinoma (SCC) having histopathological exams as standard of reference.</p> <p>Materials and methods</p> <p>Institutional review board approval with a waiver of informed patient consent was obtained. Of the 147 patients selected from our database who underwent surgical excision of a tumour arising into the oral cavity, thirty-six patients (26 men, 10 women; mean age, 56 years; range, 30-75 years) with hystologically proven SCC who performed both a preoperative MRI and MDCT, composed our final study population.</p> <p>Images were qualitatively analyzed in consensus by two expert radiologist in head and neck imaging. Sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) were assessed for both MRI and MDCT.</p> <p>Differences in sensitivity, specificity, positive and negative predictive values were calculated at a statistical significance of p < .05.</p> <p>Results</p> <p>The sensitivity, the specificity and the accuracy of MRI and MDCT in the detection of the mandibular involvement were respectively 93%, 82%, 86% and 79%, 82%, 81%, while the positive predictive value (PPV) and negative predictive value (NPV) were respectively 76%, 95% and 73%, 86%. There wasn't any statistically significant difference in overall diagnostic accuracy between MRI and MDCT in the evaluation of mandibular tumour invasion (p > .05).</p> <p>Conclusion</p> <p>MRI showed to have a higher sensitivity compare to MDCT in the assessment of mandibular involvement from SCC arising in the oral cavity although none statistically significant differences were noted.</p

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    Daily energy requirements of male academy soccer players are greater than age-matched non-academy soccer players: A doubly labelled water investigation.

    Get PDF
    This study aimed to test the hypothesis that the total daily energy expenditure (TDEE) of male academy soccer players is greater than players not enrolled on a formalised academy programme. English Premier League academy (ACAD: n = 8, 13 years, 50 ± 6 kg, 88 ± 3% predicted adult stature, PAS) and non-academy players (NON-ACAD: n = 6, 13 years, 53 ± 12 kg, 89 ± 3% PAS) were assessed for TDEE (via doubly labelled water) during a 14-day in-season period. External loading was evaluated during training (ACAD: 8 sessions, NON-ACAD: 2 sessions) and games (2 games for both ACAD and NON-ACAD) via GPS, and daily physical activity was evaluated using triaxial accelerometry. Accumulative duration of soccer activity (ACAD: 975 ± 23 min, NON-ACAD: 397 ± 2 min; p < 0.01), distance covered (ACAD: 54.2 ± 8.3 km, NON-ACAD: 21.6 ± 4.7 km; p < 0.05) and time engaged in daily moderate-to-vigorous (ACAD: 124 ± 17 min, NON-ACAD: 79 ± 18 min; p < 0.01) activity was greater in academy players. Academy players displayed greater absolute (ACAD: 3380 ± 517 kcal · d-1, NON-ACAD: 2641 ± 308 kcal · d-1; p < 0.05) and relative TDEE (ACAD: 66 ± 6 kcal · kg · d-1, NON-ACAD: 52 ± 10 kcal · kg · d-1; p < 0.05) versus non-academy players. Given the injury risk associated with high training volumes during growth and maturation, data demonstrate the requirement for academy players to consume sufficient energy (and carbohydrate) intake to support the enhanced energy cost of academy programmes

    Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considerations in applying association mapping (AM) to plant breeding are population structure and size: not accounting for structure and/or using small populations can lead to elevated false-positive rates. The principal determinants of population structure in cultivated barley are growth habit and inflorescence type. Both are under complex genetic control: growth habit is controlled by the epistatic interactions of several genes. For inflorescence type, multiple loss-of-function alleles in one gene lead to the same phenotype. We used these two traits as models for assessing the effectiveness of AM. This research was initiated using the CAP Core germplasm array (n = 102) assembled at the start of the Barley Coordinated Agricultural Project (CAP). This array was genotyped with 4,608 SNPs and we re-sequenced genes involved in morphology, growth and development. Larger arrays of breeding germplasm were subsequently genotyped and phenotyped under the auspices of the CAP project. This provided sets of 247 accessions phenotyped for growth habit and 2,473 accessions phenotyped for inflorescence type. Each of the larger populations was genotyped with 3,072 SNPs derived from the original set of 4,608.</p> <p>Results</p> <p>Significant associations with SNPs located in the vicinity of the loci involved in growth habit and inflorescence type were found in the CAP Core. Differentiation of true and spurious associations was not possible without <it>a priori </it>knowledge of the candidate genes, based on re-sequencing. The re-sequencing data were used to define allele types of the determinant genes based on functional polymorphisms. In a second round of association mapping, these synthetic markers based on allele types gave the most significant associations. When the synthetic markers were used as anchor points for analysis of interactions, we detected other known-function genes and candidate loci involved in the control of growth habit and inflorescence type. We then conducted association analyses - with SNP data only - in the larger germplasm arrays. For both vernalization sensitivity and inflorescence type, the most significant associations in the larger data sets were found with SNPs coincident with the synthetic markers used in the CAP Core and with SNPs detected via interaction analysis in the CAP Core.</p> <p>Conclusions</p> <p>Small and highly structured collections of germplasm, such as the CAP Core, are cost-effectively phenotyped and genotyped with high-throughput markers. They are also useful for characterizing allelic diversity at loci in germplasm of interest. Our results suggest that discovery-oriented exercises in AM in such small arrays may generate a large number of false-positives. However, if haplotypes in candidate genes are available, they may be used as anchors in an analysis of interactions to identify other candidate regions harboring genes determining target traits. Using larger germplasm arrays, genome regions where the principal genes determining vernalization sensitivity and row type are located were identified.</p

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Dynamics of dental evolution in ornithopod dinosaurs.

    Get PDF
    Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the 'duck-billed' hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution

    Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1

    Get PDF
    A full-length cDNA of 1,728 nt, called MsLEA3-1, was cloned from alfalfa by rapid amplification of cDNA ends from an expressed sequence tag homologous to soybean pGmPM10 (accession No. AAA91965.1). MsLEA3-1, encodes a deduced protein of 436 amino acids, a calculated molecular weight of 47.0 kDa, a theoretical isoelectric point of 5.18, and closest homology with late embryogenesis abundant proteins in soybean. Sequence homology suggested a signal peptide in the N terminus, and subcellular localization with GFP revealed that MsLEA3-1 was localized preferentially to the nucleolus. The transcript titre of MsLEA3-1 was strongly enriched in leaves compared with roots and stems of mature alfalfa plants. Gene expression of MsLEA3-1 was strongly induced when seedlings were treated with NaCl and ABA. Expression of the MsLEA3-1 transgenic was detected in transgenic tobacco. Malondialdehyde content and, electrical conductivity content were reduced and electrical conductivity and proline content were increased in transgenic tobacco compared with non-transgenic tobacco under salt stress. The results showed that accumulation of the MsLEA3-1 protein in the vegetative tissues of transgenic plants enhanced their tolerance to salt stress. These results demonstrate a role for the MsLEA3-1 protein in stress protection and suggest the potential of the MsLEA3-1 gene for genetic engineering of salt tolerance
    corecore