52 research outputs found

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes

    Get PDF
    open263siWe acknowledge support by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118), Scientific Grant Agency VEGA(GrantNo.2/0101/18), as well as by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (Grant Agreement No. 677232)Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.openKwon T.; Shibata H.; Kepfer-Rojas S.; Schmidt I.K.; Larsen K.S.; Beier C.; Berg B.; Verheyen K.; Lamarque J.-F.; Hagedorn F.; Eisenhauer N.; Djukic I.; Caliman A.; Paquette A.; Gutierrez-Giron A.; Petraglia A.; Augustaitis A.; Saillard A.; Ruiz-Fernandez A.C.; Sousa A.I.; Lillebo A.I.; Da Rocha Gripp A.; Lamprecht A.; Bohner A.; Francez A.-J.; Malyshev A.; Andric A.; Stanisci A.; Zolles A.; Avila A.; Virkkala A.-M.; Probst A.; Ouin A.; Khuroo A.A.; Verstraeten A.; Stefanski A.; Gaxiola A.; Muys B.; Gozalo B.; Ahrends B.; Yang B.; Erschbamer B.; Rodriguez Ortiz C.E.; Christiansen C.T.; Meredieu C.; Mony C.; Nock C.; Wang C.-P.; Baum C.; Rixen C.; Delire C.; Piscart C.; Andrews C.; Rebmann C.; Branquinho C.; Jan D.; Wundram D.; Vujanovic D.; Adair E.C.; Ordonez-Regil E.; Crawford E.R.; Tropina E.F.; Hornung E.; Groner E.; Lucot E.; Gacia E.; Levesque E.; Benedito E.; Davydov E.A.; Bolzan F.P.; Maestre F.T.; Maunoury-Danger F.; Kitz F.; Hofhansl F.; Hofhansl G.; De Almeida Lobo F.; Souza F.L.; Zehetner F.; Koffi F.K.; Wohlfahrt G.; Certini G.; Pinha G.D.; Gonzlez G.; Canut G.; Pauli H.; Bahamonde H.A.; Feldhaar H.; Jger H.; Serrano H.C.; Verheyden H.; Bruelheide H.; Meesenburg H.; Jungkunst H.; Jactel H.; Kurokawa H.; Yesilonis I.; Melece I.; Van Halder I.; Quiros I.G.; Fekete I.; Ostonen I.; Borovsk J.; Roales J.; Shoqeir J.H.; Jean-Christophe Lata J.; Probst J.-L.; Vijayanathan J.; Dolezal J.; Sanchez-Cabeza J.-A.; Merlet J.; Loehr J.; Von Oppen J.; Loffler J.; Benito Alonso J.L.; Cardoso-Mohedano J.-G.; Penuelas J.; Morina J.C.; Quinde J.D.; Jimnez J.J.; Alatalo J.M.; Seeber J.; Kemppinen J.; Stadler J.; Kriiska K.; Van Den Meersche K.; Fukuzawa K.; Szlavecz K.; Juhos K.; Gerhtov K.; Lajtha K.; Jennings K.; Jennings J.; Ecology P.; Hoshizaki K.; Green K.; Steinbauer K.; Pazianoto L.; Dienstbach L.; Yahdjian L.; Williams L.J.; Brigham L.; Hanna L.; Hanna H.; Rustad L.; Morillas L.; Silva Carneiro L.; Di Martino L.; Villar L.; Fernandes Tavares L.A.; Morley M.; Winkler M.; Lebouvier M.; Tomaselli M.; Schaub M.; Glushkova M.; Torres M.G.A.; De Graaff M.-A.; Pons M.-N.; Bauters M.; Mazn M.; Frenzel M.; Wagner M.; Didion M.; Hamid M.; Lopes M.; Apple M.; Weih M.; Mojses M.; Gualmini M.; Vadeboncoeur M.; Bierbaumer M.; Danger M.; Scherer-Lorenzen M.; Ruek M.; Isabellon M.; Di Musciano M.; Carbognani M.; Zhiyanski M.; Puca M.; Barna M.; Ataka M.; Luoto M.; H. Alsafaran M.; Barsoum N.; Tokuchi N.; Korboulewsky N.; Lecomte N.; Filippova N.; Hlzel N.; Ferlian O.; Romero O.; Pinto-Jr O.; Peri P.; Dan Turtureanu P.; Haase P.; Macreadie P.; Reich P.B.; Petk P.; Choler P.; Marmonier P.; Ponette Q.; Dettogni Guariento R.; Canessa R.; Kiese R.; Hewitt R.; Weigel R.; Kanka R.; Cazzolla Gatti R.; Martins R.L.; Ogaya R.; Georges R.; Gaviln R.G.; Wittlinger S.; Puijalon S.; Suzuki S.; Martin S.; Anja S.; Gogo S.; Schueler S.; Drollinger S.; Mereu S.; Wipf S.; Trevathan-Tackett S.; Stoll S.; Lfgren S.; Trogisch S.; Seitz S.; Glatzel S.; Venn S.; Dousset S.; Mori T.; Sato T.; Hishi T.; Nakaji T.; Jean-Paul T.; Camboulive T.; Spiegelberger T.; Scholten T.; Mozdzer T.J.; Kleinebecker T.; Runk T.; Ramaswiela T.; Hiura T.; Enoki T.; Ursu T.-M.; Di Cella U.M.; Hamer U.; Klaus V.; Di Cecco V.; Rego V.; Fontana V.; Piscov V.; Bretagnolle V.; Maire V.; Farjalla V.; Pascal V.; Zhou W.; Luo W.; Parker W.; Parker P.; Kominam Y.; Kotrocz Z.; Utsumi Y.Kwon T.; Shibata H.; Kepfer-Rojas S.; Schmidt I.K.; Larsen K.S.; Beier C.; Berg B.; Verheyen K.; Lamarque J.-F.; Hagedorn F.; Eisenhauer N.; Djukic I.; Caliman A.; Paquette A.; Gutierrez-Giron A.; Petraglia A.; Augustaitis A.; Saillard A.; Ruiz-Fernandez A.C.; Sousa A.I.; Lillebo A.I.; Da Rocha Gripp A.; Lamprecht A.; Bohner A.; Francez A.-J.; Malyshev A.; Andric A.; Stanisci A.; Zolles A.; Avila A.; Virkkala A.-M.; Probst A.; Ouin A.; Khuroo A.A.; Verstraeten A.; Stefanski A.; Gaxiola A.; Muys B.; Gozalo B.; Ahrends B.; Yang B.; Erschbamer B.; Rodriguez Ortiz C.E.; Christiansen C.T.; Meredieu C.; Mony C.; Nock C.; Wang C.-P.; Baum C.; Rixen C.; Delire C.; Piscart C.; Andrews C.; Rebmann C.; Branquinho C.; Jan D.; Wundram D.; Vujanovic D.; Adair E.C.; Ordonez-Regil E.; Crawford E.R.; Tropina E.F.; Hornung E.; Groner E.; Lucot E.; Gacia E.; Levesque E.; Benedito E.; Davydov E.A.; Bolzan F.P.; Maestre F.T.; Maunoury-Danger F.; Kitz F.; Hofhansl F.; Hofhansl G.; De Almeida Lobo F.; Souza F.L.; Zehetner F.; Koffi F.K.; Wohlfahrt G.; Certini G.; Pinha G.D.; Gonzlez G.; Canut G.; Pauli H.; Bahamonde H.A.; Feldhaar H.; Jger H.; Serrano H.C.; Verheyden H.; Bruelheide H.; Meesenburg H.; Jungkunst H.; Jactel H.; Kurokawa H.; Yesilonis I.; Melece I.; Van Halder I.; Quiros I.G.; Fekete I.; Ostonen I.; Borovsk J.; Roales J.; Shoqeir J.H.; Jean-Christophe Lata J.; Probst J.-L.; Vijayanathan J.; Dolezal J.; Sanchez-Cabeza J.-A.; Merlet J.; Loehr J.; Von Oppen J.; Loffler J.; Benito Alonso J.L.; Cardoso-Mohedano J.-G.; Penuelas J.; Morina J.C.; Quinde J.D.; Jimnez J.J.; Alatalo J.M.; Seeber J.; Kemppinen J.; Stadler J.; Kriiska K.; Van Den Meersche K.; Fukuzawa K.; Szlavecz K.; Juhos K.; Gerhtov K.; Lajtha K.; Jennings K.; Jennings J.; Ecology P.; Hoshizaki K.; Green K.; Steinbauer K.; Pazianoto L.; Dienstbach L.; Yahdjian L.; Williams L.J.; Brigham L.; Hanna L.; Hanna H.; Rustad L.; Morillas L.; Silva Carneiro L.; Di Martino L.; Villar L.; Fernandes Tavares L.A.; Morley M.; Winkler M.; Lebouvier M.; Tomaselli M.; Schaub M.; Glushkova M.; Torres M.G.A.; De Graaff M.-A.; Pons M.-N.; Bauters M.; Mazn M.; Frenzel M.; Wagner M.; Didion M.; Hamid M.; Lopes M.; Apple M.; Weih M.; Mojses M.; Gualmini M.; Vadeboncoeur M.; Bierbaumer M.; Danger M.; Scherer-Lorenzen M.; Ruek M.; Isabellon M.; Di Musciano M.; Carbognani M.; Zhiyanski M.; Puca M.; Barna M.; Ataka M.; Luoto M.; H. Alsafaran M.; Barsoum N.; Tokuchi N.; Korboulewsky N.; Lecomte N.; Filippova N.; Hlzel N.; Ferlian O.; Romero O.; Pinto-Jr O.; Peri P.; Dan Turtureanu P.; Haase P.; Macreadie P.; Reich P.B.; Petk P.; Choler P.; Marmonier P.; Ponette Q.; Dettogni Guariento R.; Canessa R.; Kiese R.; Hewitt R.; Weigel R.; Kanka R.; Cazzolla Gatti R.; Martins R.L.; Ogaya R.; Georges R.; Gaviln R.G.; Wittlinger S.; Puijalon S.; Suzuki S.; Martin S.; Anja S.; Gogo S.; Schueler S.; Drollinger S.; Mereu S.; Wipf S.; Trevathan-Tackett S.; Stoll S.; Lfgren S.; Trogisch S.; Seitz S.; Glatzel S.; Venn S.; Dousset S.; Mori T.; Sato T.; Hishi T.; Nakaji T.; Jean-Paul T.; Camboulive T.; Spiegelberger T.; Scholten T.; Mozdzer T.J.; Kleinebecker T.; Runk T.; Ramaswiela T.; Hiura T.; Enoki T.; Ursu T.-M.; Di Cella U.M.; Hamer U.; Klaus V.; Di Cecco V.; Rego V.; Fontana V.; Piscov V.; Bretagnolle V.; Maire V.; Farjalla V.; Pascal V.; Zhou W.; Luo W.; Parker W.; Parker P.; Kominam Y.; Kotrocz Z.; Utsumi Y

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Gravitational Lensing from a Spacetime Perspective

    Full text link

    Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes

    Get PDF
    Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate. © Copyright © 2021 Kwon, Shibata, Kepfer-Rojas, Schmidt, Larsen, Beier, Berg, Verheyen, Lamarque, Hagedorn, Eisenhauer, Djukic and TeaComposition Network

    Reproductive and toxicological impacts of herbicides used in Eucalyptus culture in Brazil on the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae)

    Get PDF
    The expansion of eucalyptus tree plantations in Brazil has raised concerns that the use of herbicides may reach non‐target organisms and compromise the environment where parasitoids are used to control Lepidoptera defoliators. So, the effect of herbicides used in eucalyptus crops on the parasitoid Palmistichus elaeisis Delvare and LaSalle, 1993 (Hymenoptera: Eulophidae) was evaluated in terms of the impact on reproduction and survival. Treatments consisted of commercial doses of the herbicides sulfentrazone, oxyfluorfen, glyphosate and isoxaflutole with a water‐only control. The herbicides were sprayed on the pupae of the alternative host Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae), which were exposed to parasitism by six females of P. elaeisis per pupa. Glufosinate and oxyfluorfen reduced parasitism and emergence of this parasitoid and were considered more harmful to the P. elaeisis females. Glyphosate and isoxaflutole resulted in higher numbers of individuals and females produced per female; thus these herbicides were less harmful to P. elaeisis and maybe used in IPM programmes in eucalyptus plantations
    • 

    corecore