17 research outputs found

    CCR5 Haplotypes and Mother-to-Child HIV Transmission in Malawi

    Get PDF
    CCR5 and CCR2 gene polymorphisms (SNPs) have been associated with protection against HIV transmission in adults and with delayed progression to AIDS. The CCR5 Delta32 deletion and SNP -2459G are associated with reduced expression of the CCR5 protein.We investigated the association between infant CCR2/CCR5 diplotype and HIV mother to child transmission (MTCT) in Malawi. Blood samples from infants (n = 552) of HIV positive women who received nevirapine were genotyped using a post-PCR multiplex ligase detection reaction and haplotypes were identified based on 8 CCR2/CCR5 SNPs and the open reading frame 32 base pair deletion. Following verification of Hardy-Weinberg equilibrium, log linear regression was performed to examine the association between mutations and MTCT. Overall, protection against MTCT was weakly associated with two CCR5 SNPs, -2459G (Risk ratio [RR], 0.78; confidence interval [CI], 0.54-1.12), and the linked CCR5 -2135T (RR, 0.78; CI, 0.54-1.13). No child carried the CCR5 Delta32 SNP. Maternal Viral Load (MVL) was found to be an effect measure modifier. Among mothers with low MVL, statistically significant protection against MTCT was observed for -2459G (RR, 0.50; CI, 0.27-0.91), and -2135T (RR, 0.51; CI, 0.28-0.92). Statistically significant protection was not found at high MVL.Results from this study suggest that CCR5 SNPs -2459G and -2135T associated with reduced receptor expression protect against MTCT of HIV at low MVLs, whereas high MVLs may over-ride differences in coreceptor availability

    CD26/dipeptidyl peptidase IV (CD26/DPPIV) is highly expressed in peripheral blood of HIV-1 exposed uninfected Female sex workers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Design of effective vaccines against the human immunodeficiency virus (HIV-1) continues to present formidable challenges. However, individuals who are exposed HIV-1 but do not get infected may reveal correlates of protection that may inform on effective vaccine design. A preliminary gene expression analysis of HIV resistant female sex workers (HIV-R) suggested a high expression CD26/DPPIV gene. Previous studies have indicated an anti-HIV effect of high CD26/DPPIV expressing cells in vitro. Similarly, high CD26/DPPIV protein levels in vivo have been shown to be a risk factor for type 2 diabetes. We carried out a study to confirm if the high CD26/DPPIV gene expression among the HIV-R were concordant with high blood protein levels and its correlation with clinical type 2 diabetes and other perturbations in the insulin signaling pathway.</p> <p>Results</p> <p>A quantitative CD26/DPPIV plasma analysis from 100 HIV-R, 100 HIV infected (HIV +) and 100 HIV negative controls (HIV Neg) showed a significantly elevated CD26/DPPIV concentration among the HIV-R group (mean 1315 ng/ml) than the HIV Neg (910 ng/ml) and HIV + (870 ng/ml, p < 0.001). Similarly a FACs analysis of cell associated DPPIV (CD26) revealed a higher CD26/DPPIV expression on CD4+ T-cells derived from HIV-R than from the HIV+ (90.30% vs 80.90 p = 0.002) and HIV Neg controls (90.30% vs 82.30 p < 0.001) respectively. A further comparison of the mean fluorescent intensity (MFI) of CD26/DPPIV expression showed a higher DPP4 MFI on HIV-R CD4+ T cells (median 118 vs 91 for HIV-Neg, p = 0.0003). An evaluation for hyperglycemia, did not confirm Type 2 diabetes but an impaired fasting glucose condition (5.775 mmol/L). A follow-up quantitative PCR analysis of the insulin signaling pathway genes showed a down expression of NFκB, a central mediator of the immune response and activator of HIV-1 transcription.</p> <p>Conclusion</p> <p>HIV resistant sex workers have a high expression of CD26/DPPIV in tandem with lowered immune activation markers. This may suggest a novel role for CD26/DPPIV in protection against HIV infection in vivo.</p

    A Low T Regulatory Cell Response May Contribute to Both Viral Control and Generalized Immune Activation in HIV Controllers

    Get PDF
    HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers) often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg) response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+), regulatory (CD4+CD25+CD127dim), HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed), untreated HIV-infected “non-controllers” with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014). Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P≤0.001). These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion

    Infection of CD8+CD45RO+ Memory T-Cells by HIV-1 and Their Proliferative Response

    Get PDF
    CD8+ T-cells are involved in controlling HIV-1 infection by eliminating infected cells and secreting soluble factors that inhibit viral replication. To investigate the mechanism and significance of infection of CD8+ T-cells by HIV-1 in vitro, we examined the susceptibility of these cells and their subsets to infection. CD8+ T-cells supported greater levels of replication with T-cell tropic strains of HIV-1, though viral production was lower than that observed in CD4+ T-cells. CD8+ T-cell infection was found to be productive through ELISA, RT-PCR and flow cytometric analyses. In addition, the CD8+CD45RO+ memory T-cell population supported higher levels of HIV-1 replication than CD8+CD45RA+ naïve T-cells. However, infection of CD8+CD45RO+ T-cells did not affect their proliferative response to the majority of mitogens tested. We conclude, with numerous lines of evidence detecting and measuring infection of CD8+ T-cells and their subsets, that this cellular target and potential reservoir may be central to HIV-1 pathogenesis

    Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5

    No full text
    Topical agents, such as microbicides, that can protect against human immunodeficiency virus (HIV) transmission are urgently needed. Using a chimeric simian/human immunodeficiency virus (SHIV SF162), which is tropic for the chemokine receptor CCR5, we report that topical application of high doses of PSC-RANTES, an amino terminus-modified analog of the chemokine RANTES, provided potent protection against vaginal challenge in rhesus macaques. These experimental findings have potentially important implications for understanding vaginal transmission of HIV and the design of strategies for its prevention

    Common genetic variation and the control of HIV-1 in humans

    Get PDF
    To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians

    Quantitative and qualitative differences in the T cell response to HIV in uninfected Ugandans exposed or unexposed to HIV-infected partners.

    No full text
    HIV-exposed and yet persistently uninfected individuals have been an intriguing, repeated observation in multiple studies, but uncertainty persists on the significance and implications of this in devising protective strategies against HIV. We carried out a cross-sectional analysis of exposed uninfected partners in a Ugandan cohort of heterosexual serodiscordant couples (37.5% antiretroviral therapy naive) comparing their T cell responses to HIV peptides with those of unexposed uninfected individuals. We used an objective definition of exposure and inclusion criteria, blinded ex vivo and cultured gamma interferon (IFN-γ) enzyme-linked immunospot assays, and multiparameter flow cytometry and intracellular cytokine staining to investigate the features of the HIV-specific response in exposed versus unexposed uninfected individuals. A response rate to HIV was detectable in unexposed uninfected (5.7%, 95% confidence interval [CI] = 3.3 to 8.1%) and, at a significantly higher level (12.5%, 95% CI = 9.7 to 15.4%, P = 0.0004), in exposed uninfected individuals. The response rate to Gag was significantly higher in exposed uninfected (10/50 [20.%]) compared to unexposed uninfected (1/35 [2.9%]) individuals (P = 0.0004). The magnitude of responses was also greater in exposed uninfected individuals but not statistically significant. The average number of peptide pools recognized was significantly higher in exposed uninfected subjects than in unexposed uninfected subjects (1.21 versus 0.47; P = 0.0106). The proportion of multifunctional responses was different in the two groups, with a higher proportion of single cytokine responses, mostly IFN-γ, in unexposed uninfected individuals compared to exposed uninfected individuals. Our findings demonstrate both quantitative and qualitative differences in T cell reactivity to HIV between HESN (HIV exposed seronegative) and HUSN (HIV unexposed seronegative) subject groups but do not discriminate as to whether they represent markers of exposure or of protection against HIV infection

    Resistance to HIV Infection

    No full text
    The biological correlates of an effective immune response that could contain or prevent HIV infection remain elusive despite substantial scientific accomplishments in understanding the interactions among the virus, the individual and the community. The observation that some individuals appear to possess resistance to HIV infection or its consequences has generated a host of epidemiologic investigations to identify biological or behavioral characteristics of these individuals. These data might hold the keys to developing appropriate strategies for mimicking the effective responses of those who appear immune. In this paper we review genetic mechanisms including the role of chemokines and their receptors, cytokines, host genetic immune response to HIV infection, local immune response correlating with behavioral variables, co-infection and immune based mechanisms that have been elucidated so far. We offer suggestions for how to use these observations as platforms for future research to further understand natural resistance to HIV infection through cohort studies, population genotype sampling, mathematical modeling of virus–host interactions and behavioral analyses
    corecore